806 research outputs found

    Optimality and Complexity in Measured Quantum-State Stochastic Processes

    Full text link
    If an experimentalist observes a sequence of emitted quantum states via either projective or positive-operator-valued measurements, the outcomes form a time series. Individual time series are realizations of a stochastic process over the measurements' classical outcomes. We recently showed that, in general, the resulting stochastic process is highly complex in two specific senses: (i) it is inherently unpredictable to varying degrees that depend on measurement choice and (ii) optimal prediction requires using an infinite number of temporal features. Here, we identify the mechanism underlying this complicatedness as generator nonunifilarity -- the degeneracy between sequences of generator states and sequences of measurement outcomes. This makes it possible to quantitatively explore the influence that measurement choice has on a quantum process' degrees of randomness and structural complexity using recently introduced methods from ergodic theory. Progress in this, though, requires quantitative measures of structure and memory in observed time series. And, success requires accurate and efficient estimation algorithms that overcome the requirement to explicitly represent an infinite set of predictive features. We provide these metrics and associated algorithms, using them to design informationally-optimal measurements of open quantum dynamical systems.Comment: 31 pages, 6 appendices, 22 figures; http://csc.ucdavis.edu/~cmg/compmech/pubs/qdic.ht

    Collapse of the Gd3+Gd^{3+} ESR fine structure throughout the coherent temperature of the Gd-doped Kondo Semiconductor CeFe4P12CeFe_{4}P_{12}

    Get PDF
    Experiments on the Gd3+Gd^{3+} Electron Spin Resonance (ESR) in the filled skutterudite Ce1−xGdxFe4P12Ce_{1-x}Gd_{x}Fe_{4}P_{12} (x≈0.001x \approx 0.001), at temperatures where the host resistivity manifests a smooth insulator-metal crossover, provides evidence of the underlying Kondo physics associated with this system. At low temperatures (below T≈KT \approx K), Ce1−xGdxFe4P12Ce_{1-x}Gd_{x}Fe_{4}P_{12} behaves as a Kondo-insulator with a relatively large hybridization gap, and the Gd3+Gd^{3+} ESR spectra displays a fine structure with lorentzian line shape, typical of insulating media. The electronic gap is attributed to the large hybridization present in the coherent regime of a Kondo lattice, when Ce 4f-electrons cooperate with band properties at half-filling. Mean-field calculations suggest that the electron-phonon interaction is fundamental at explaining the strong 4f-electron hybridization in this filled skutterudite. The resulting electronic structure is strongly temperature dependent, and at about T∗≈160KT^{*} \approx 160 K the system undergoes an insulator-to-metal transition induced by the withdrawal of 4f-electrons from the Fermi volume, the system becoming metallic and non-magnetic. The Gd3+Gd^{3+} ESR fine structure coalesces into a single dysonian resonance, as in metals. Still, our simulations suggest that exchange-narrowing via the usual Korringa mechanism, alone, is not capable of describing the thermal behavior of the ESR spectra in the entire temperature region (4.24.2 - 300300 K). We propose that temperature activated fluctuating-valence of the Ce ions is the missing ingredient that, added to the usual exchange-narrowing mechanism, fully describes this unique temperature dependence of the Gd3+Gd^{3+} ESR fine structure observed in Ce1−xGdxFe4P12Ce_{1-x}Gd_{x}Fe_{4}P_{12}.Comment: 19 pages, 6 figure

    Nonlinear dynamics of coupled transverse-rotational waves in granular chains

    Get PDF
    The nonlinear dynamics of coupled waves in one-dimensional granular chains with and without a substrate is theoretically studied accounting for quadratic nonlinearity. The multiple time scale method is used to derive the nonlinear dispersion relations for infinite granular chains and to obtain the wave solutions for semiinfinite systems. It is shown that the sum-frequency and difference-frequency components of the coupled transverse-rotational waves are generated due to their nonlinear interactions with the longitudinal wave. Nonlinear resonances are not present in the chain with no substrate where these frequency components have low amplitudes and exhibit beating oscillations. In the chain positioned on a substrate two types of nonlinear resonances are predicted. At resonance, the fundamental frequency wave amplitudes decrease and the generated frequency component amplitudes increase along the chain, accompanied by the oscillations due to the wave numbers asynchronism. The results confirm the possibility of a highly efficient energy transfer between the waves of different frequencies, which could find applications in the design of acoustic devices for energy transfer and energy rectification

    Controlled Skyrmion Ratchet in Linear Protrusion Defects

    Full text link
    Using atomistic simulations, we investigate the dynamical behavior of a single skyrmion interacting with an asymmetric linear protrusion array under external ac driving. When the ac drive is applied along the xx direction, the skyrmion moves along the hard direction of the substrate asymmetry in three phases: a pinned phase with localized skyrmion orbits, a constant velocity phase where the orbits become delocalized, and a reentrant pinned phase with larger localized orbits. We measure the dependence of the skyrmion velocity on the frequency and amplitude of the ac drive. All three phases appear for all frequency values, and in the constant velocity phase the skyrmion velocity depends only on the frequency and not on the amplitude of the ac drive. When ac driving is applied in the yy direction, the skyrmion moves along the easy direction of the substrate asymmetry and exhibits the same three phases as for xx direction driving along with a fourth phase which, at high driving frequencies, consists of a series of constant velocity phases, each with different average skyrmion velocities. For low frequencies, the constant velocity phase is lost and the skyrmion speed increases linearly with increasing ac drive amplitude due to a Magnus boost effect. Our findings suggest new ways to create reliable data transport for spintronic devices using skyrmions as information carriers, where the skyrmion direction and speed can be controlled by varying only the ac drive amplitude and frequency.Comment: 12 pages, 11 figure

    Skyrmion Transport and Annihilation in Funnel Geometries

    Full text link
    Using atomistic simulations, we have investigated the transport and annihilation of skyrmions interacting with a funnel array under a current applied perpendicular to the funnel axis. We find that transport without annihilation is possible at low currents, when the motion is dominated by skyrmion-skyrmion interactions and skyrmions push each other through the funnel opening. Skyrmion annihilation occurs for higher currents when skyrmions in the upper half of the sample exert pressure on skyrmions in the bottom half of the sample due to the external current. Upon interacting with the funnel wall, the skyrmions undergo a size reduction that makes it easier for them to pass through the funnel opening. We find five phases as a function of the applied current and the size of the funnel opening: (i) pinned, (ii) transport without annihilation, (iii) transport with annihilation, (iv) complete annihilation, and (v) a reentrant pinning phase that only occurs for very narrow openings. Our findings provide insight into how to control skyrmion transport using funnel arrays by delineating regimes in which transport of skyrmions is possible as well as the conditions under which annihilation occurs.Comment: 17 pages, 10 figure

    Asymptotic entanglement in a two-dimensional quantum walk

    Full text link
    The evolution operator of a discrete-time quantum walk involves a conditional shift in position space which entangles the coin and position degrees of freedom of the walker. After several steps, the coin-position entanglement (CPE) converges to a well defined value which depends on the initial state. In this work we provide an analytical method which allows for the exact calculation of the asymptotic reduced density operator and the corresponding CPE for a discrete-time quantum walk on a two-dimensional lattice. We use the von Neumann entropy of the reduced density operator as an entanglement measure. The method is applied to the case of a Hadamard walk for which the dependence of the resulting CPE on initial conditions is obtained. Initial states leading to maximum or minimum CPE are identified and the relation between the coin or position entanglement present in the initial state of the walker and the final level of CPE is discussed. The CPE obtained from separable initial states satisfies an additivity property in terms of CPE of the corresponding one-dimensional cases. Non-local initial conditions are also considered and we find that the extreme case of an initial uniform position distribution leads to the largest CPE variation.Comment: Major revision. Improved structure. Theoretical results are now separated from specific examples. Most figures have been replaced by new versions. The paper is now significantly reduced in size: 11 pages, 7 figure

    Genotyping-by-Sequencing Derived High-Density Linkage Map and its Application to QTL Mapping of Flag Leaf Traits in Bread Wheat

    Get PDF
    Winter wheat parents ‘Harry’ (drought tolerant) and ‘Wesley’ (drought susceptible) were used to develop a recombinant inbred population with future goals of identifying genomic regions associated with drought tolerance. To precisely map genomic regions, high-density linkage maps are a prerequisite. In this study genotyping-by-sequencing (GBS) was used to construct the high-density linkage map. The map contained 3,641 markers distributed on 21 chromosomes and spanned 1,959 cM with an average distance of 1.8 cM between markers. The constructed linkage map revealed strong collinearity in marker order across 21 chromosomes with POPSEQ-v2.0, which was based on a high-density linkage map. The reliability of the linkage map for QTL mapping was demonstrated by co-localizing the genes to previously mapped genomic regions for two highly heritable traits, chaff color, and leaf cuticular wax. Applicability of linkage map for QTL mapping of three quantitative traits, flag leaf length, width, and area, identified 21 QTLs in four environments, and QTL expression varied across the environments. Two major stable QTLs, one each for flag leaf length (Qfll.hww-7A) and flag leaf width (Qflw.hww-5A) were identified. The map constructed will facilitate QTL and fine mapping of quantitative traits, map-based cloning, comparative mapping, and in marker-assisted wheat breeding endeavors

    Matching fields of a long superconducting film

    Full text link
    We obtain the vortex configurations, the matching fields and the magnetization of a superconducting film with a finite cross section. The applied magnetic field is normal to this cross section, and we use London theory to calculate many of its properties, such as the local magnetic field, the free energy and the induction for the mixed state. Thus previous similar theoretical works, done for an infinitely long superconducting film, are recovered here, in the special limit of a very long cross section.Comment: Contains a REVTeX file and 4 figure
    • …
    corecore