118 research outputs found

    Gas solid contacting measurements in a turbulent fluidized bed by oxidation of carbon monoxide

    Get PDF
    The conversion rate of the mass transfer controlled oxidation of CO over a Pt/gamma-alumina catalyst (d(p) = 65 mu m) has been studied in a fluidized bed (internal diameter = 0.05 m) operated close to and in the turbulent fluid bed regime. The objectives were to investigate the gas-solids contacting efficiency to evaluate the conversion data in terms of overall mass transfer coefficients and define the apparent contact efficiency. At high superficial gas velocities, the concept of formation of particle agglomerates and voids is more realistic than the two-phase model considering discrete bubbles and a dense phase. The two-phase model is not useless but has hardly any relation with the real flow pattern in the turbulent regime

    Catalytic hydrotreatment of pyrolytic lignins from different sources to biobased chemicals:Identification of feed-product relations

    Get PDF
    The pyrolysis liquid biorefinery concept involves separation of pyrolysis liquids in various fractions followed by conversion of the fractions to value-added products. Pyrolytic lignins (PLs), the water-insoluble fractions of pyrolysis liquids, are heterogeneous, cross linked oligomers composed of substituted phenolics whose structure and physicochemical properties vary significantly depending on the biomass source. The catalytic hydrotreatment of six PLs from different biomass sources (pine, prunings, verge grass, miscanthus and sunflower seed peel) was investigated to determine the effect of different feedstocks on the final product composition and particularly the amount of alkylphenolics and aromatics, the latter being important building blocks for the chemical industry. Hydrotreatment was performed with Pd/C, 100 bar of hydrogen pressure and temperatures in the range of 350–435 °C, resulting in depolymerized product mixtures with monomer yields up to 39.1 wt% (based on PL intake). The molecular composition of the hydrotreated oils was shown to be a strong function of the PL feed and reaction conditions. Statistical analyses provided the identification of specific structural drivers on the formation of aromatics and phenolics, and a simple model able to accurately predict the yields of such monomers after catalytic hydrotreatment was obtained (R2 = 0.9944) and cross-validated (R2 = 0.9326). These feed-product relations will support future selections of PL feeds to obtain the highest amounts of valuable biobased chemicals

    Electronic characterization of redox (non)-innocent Fe2S2 reference systems:a multi K-edge X-ray spectroscopic study

    Get PDF
    Di-iron dithiolate hydrogenase model complexes are promising systems for electrocatalytic production of dihydrogen and have therefore been spectroscopically and theoretically investigated in this study. The direct effect of ligand substitution on the redox activity of the complex is examined. In order to understand and eventually optimize such systems, we characterised both metal and ligand in detail, using element specific X-ray absorption Fe- and S-K edge XAS. The (electronic) structure of three different [Fe2S2] hydrogenase systems in their non-reduced state was investigated. The effect of one- and two-electron reduction on the (electronic) structure was subsequently investigated. The S K-edge XAS spectra proved to be sensitive to delocalization of the electron density into the aromatic ring. The earlier postulated charge and spin localization in these complexes could now be measured directly using XANES. Moreover, the electron density (from S K-edge XANES) could be directly correlated to the Fe–CO bond length (from Fe K-edge EXAFS), which are in turn both related to the reported catalytic activity of these complexes. The delocalization of the electron density into the conjugated π-system of the aromatic moieties lowers the basicity of the diiron core and since protonation occurs at the diiron (as a rate determining step), lowering the basicity decreases the extent of protonation and consequently the catalytic activity

    Pyrolytic lignin:A promising biorefinery feedstock for the production of fuels and valuable chemicals

    Get PDF
    Lignocellulosic biomass is a key feedstock for the sustainable production of biofuels, biobased chemicals and performance materials. Biomass can be efficiently converted into pyrolysis liquids (also known as bio-oils) by the well-established fast pyrolysis technology. Currently, there is significant interest in the application of fast pyrolysis technology as principle biomass conversion technology due to its feedstock flexibility, low cost and high energy conversion efficiency, with many emerging commercial enterprises being established around the globe. Upgrading of the bio-oils is a requisite, and is complicated by its complex and heterogeneous organic nature. Pyrolysis liquids may be further separated by a simple water fractionation, yielding an aqueous sugar-rich phase and a water-insoluble pyrolytic lignin (PL) fraction. This separation step allows the use of dedicated conversion strategies for each fraction, which can be highly advantageous due to their differences in composition and reactivity. For example, the sugar-rich fractions can be used for fermentation, while the phenolic-rich PL is a particularly promising feedstock for the production of a wide range of platform chemicals and energy-dense streams upon depolymerization. To aid the emerging use of PL, novel characterization techniques and valorization strategies are being explored. In this review, the fast pyrolysis process and PL characterization efforts are discussed in detail, followed by the state-of-the-art regarding PL processing using both oxidative and reductive (catalytic) strategies, as well as a combination thereof. Possible applications are discussed and recommendations for future research are provided

    A novel free-fall reactor for (catalytic) pyrolysis of biomass and plastics

    Get PDF
    Please click Additional Files below to see the full abstrac

    Efficient depolymerization of lignin to biobased chemicals using a two-step approach involving ozonation in a continuous flow microreactor followed by catalytic hydrotreatment

    Get PDF
    Lignin is a promising feedstock for the replacement of conventional carbon sources for the production of chemicals and fuels. In this paper, results are reported for the depolymerization of various residual lignins in the absence of a catalyst by utilizing ozone. Reactions were performed in a microreactor setup ensuring high gas-liquid mass transfer rates, a low inventory of ozone, and straightforward scale-up possibilities. The ozonation is demonstrated using a representative model compound (vanillin) and various lignins (pyrolytic and organosolv) dissolved in methanol (2.5 wt %). Experiments were performed under ambient conditions, at gas-liquid flow ratios ranging from 30 to 90 and short residence times on the order of 12-24 s. Analyses of the products after methanol removal revealed the presence of (di)carboxylic acids, methyl esters, and acetals. Extensive depolymerization was achieved (i.e., up to 30% for pyrolytic lignin and 70% for organosolv lignins). Furthermore, a two-step approach in which the ozonated lignin is further hydrotreated (350-400 degrees C, 100 bar H-2, 4 h, Pd/C as catalyst) showed a substantial increase in depolymerization efficiency, yielding a 2.5-fold increased monomer yield in the product oil compared to a hydrotreatment step only

    Quantum simulation of thermodynamics in an integrated quantum photonic processor

    Get PDF
    One of the core questions of quantum physics is how to reconcile the unitary evolution of quantum states, which is information-preserving and time-reversible, with evolution following the second law of thermodynamics, which, in general, is neither. The resolution to this paradox is to recognize that global unitary evolution of a multi-partite quantum state causes the state of local subsystems to evolve towards maximum-entropy states. In this work, we experimentally demonstrate this effect in linear quantum optics by simultaneously showing the convergence of local quantum states to a generalized Gibbs ensemble constituting a maximum-entropy state under precisely controlled conditions, while introducing an efficient certification method to demonstrate that the state retains global purity. Our quantum states are manipulated by a programmable integrated quantum photonic processor, which simulates arbitrary non-interacting Hamiltonians, demonstrating the universality of this phenomenon. Our results show the potential of photonic devices for quantum simulations involving non-Gaussian states

    Quantum photo-thermodynamics on a programmable photonic quantum processor

    Get PDF
    One of the core questions of quantum physics is how to reconcile the unitary evolution of quantum states, which is information-preserving and time-reversible, with the second law of thermodynamics, which is neither. The resolution to this paradox is to recognize that global unitary evolution of a multi-partite quantum state causes the state of local subsystems to evolve towards maximum-entropy states. In this work, we experimentally demonstrate this effect in linear quantum optics by simultaneously showing the convergence of local quantum states to a generalized Gibbs ensemble constituting a maximum-entropy state under precisely controlled conditions, while using a new, efficient certification method to demonstrate that the state retains global purity. Our quantum states are manipulated by a programmable integrated photonic quantum processor, which simulates arbitrary non-interacting Hamiltonians, demonstrating the universality of this phenomenon. Our results show the potential of photonic devices for quantum simulations involving non-Gaussian states
    • …
    corecore