12 research outputs found

    Environmental and sanitary conditions of guanabara bay, Rio de Janeiro

    Get PDF
    Guanabara Bay is the second largest bay in the coast of Brazil, with an area of 384 km2. In its surroundings live circa 16 million inhabitants, out of which 6 million live in Rio de Janeiro city, one of the largest cities of the country, and the host of the 2016 Olympic Games. Anthropogenic interference in Guanabara Bay area started early in the XVI century, but environmental impacts escalated from 1930, when this region underwent an industrialization process. Herein we present an overview of the current environmental and sanitary conditions of Guanabara Bay, a consequence of all these decades of impacts. We will focus on microbial communities, how they may affect higher trophic levels of the aquatic community and also human health. The anthropogenic impacts in the bay are flagged by heavy eutrophication and by the emergence of pathogenic microorganisms that are either carried by domestic and/or hospital waste (e.g., virus, KPC-producing bacteria, and fecal coliforms), or that proliferate in such conditions (e.g., vibrios). Antibiotic resistance genes are commonly found in metagenomes of Guanabara Bay planktonic microorganisms. Furthermore, eutrophication results in recurrent algal blooms, with signs of a shift toward flagellated, mixotrophic groups, including several potentially harmful species. A recent large-scale fish kill episode, and a long trend decrease in fish stocks also reflects the bay’s degraded water quality. Although pollution of Guanabara Bay is not a recent problem, the hosting of the 2016 Olympic Games propelled the government to launch a series of plans to restore the bay’s water quality. If all plans are fully implemented, the restoration of Guanabara Bay and its shores may be one of the best legacies of the Olympic Games in Rio de Janeiro

    Diversity and antimicrobial potential of culturable heterotrophic bacteria associated with the endemic marine sponge Arenosclera brasiliensis

    Get PDF
    Marine sponges are the oldest Metazoa, very often presenting a complex microbial consortium. Such is the case of the marine sponge Arenosclera brasiliensis, endemic to Rio de Janeiro State, Brazil. In this investigation we characterized the diversity of some of the culturable heterotrophic bacteria living in association with A. brasiliensis and determined their antimicrobial activity. The genera Endozoicomonas (N = 32), Bacillus (N = 26), Shewanella (N = 17), Pseudovibrio (N = 12), and Ruegeria (N = 8) were dominant among the recovered isolates, corresponding to 97% of all isolates. Approximately one third of the isolates living in association with A. brasiliensis produced antibiotics that inhibited the growth of Bacillus subtilis, suggesting that bacteria associated with this sponge play a role in its health

    Genomic Attributes of Novel Symbiont Pseudovibrio brasiliensis sp. nov. Isolated From the Sponge Arenosclera brasiliensis

    No full text
    Sponge holobionts are defined as the host animals and their associated microbiomes. Both host and microbiome produce extracellular products that facilitate interaction within the holobiont. For example, microbes may provide nutrition for the animal host and protection against pathogens. The genomic study of bacterial cultures may shed light on the properties of novel symbiotic bacteria isolated from marine holobionts. In this study, we performed a genome-based analysis of Pseudovibrio brasiliensis Ab134T isolated from the sponge Arenosclera brasiliensis. This novel strain is phylogenetically related to Pseudovibrio denitrificans. In silico DNA-DNA hybridization and calculation of the average amino acid identity between the strain Ab134T and P. denitrificans JCM 12308T showed <70% similarity and <95% identity, respectively. This novel bacterial species possesses genomic features that hint at several possible roles in symbiosis (e.g., production of secondary metabolites, including bromotyrosine-derived alkaloids) in sponge and coral holobionts. We also detected gene clusters encoding type III, type IV, and type VI secretion systems and 26 toxin-like proteins, including probable paralogs. Our results demonstrate the genome versatility of P. brasiliensis Ab134T and the potential to attach to host cells, which may play a role in its symbiotic lifestyle

    DataSheet1.docx

    No full text
    <p>Sponge holobionts are defined as the host animals and their associated microbiomes. Both host and microbiome produce extracellular products that facilitate interaction within the holobiont. For example, microbes may provide nutrition for the animal host and protection against pathogens. The genomic study of bacterial cultures may shed light on the properties of novel symbiotic bacteria isolated from marine holobionts. In this study, we performed a genome-based analysis of Pseudovibrio brasiliensis Ab134<sup>T</sup> isolated from the sponge Arenosclera brasiliensis. This novel strain is phylogenetically related to Pseudovibrio denitrificans. In silico DNA-DNA hybridization and calculation of the average amino acid identity between the strain Ab134<sup>T</sup> and P. denitrificans JCM 12308<sup>T</sup> showed <70% similarity and <95% identity, respectively. This novel bacterial species possesses genomic features that hint at several possible roles in symbiosis (e.g., production of secondary metabolites, including bromotyrosine-derived alkaloids) in sponge and coral holobionts. We also detected gene clusters encoding type III, type IV, and type VI secretion systems and 26 toxin-like proteins, including probable paralogs. Our results demonstrate the genome versatility of P. brasiliensis Ab134<sup>T</sup> and the potential to attach to host cells, which may play a role in its symbiotic lifestyle.</p

    Image2.TIFF

    No full text
    <p>Sponge holobionts are defined as the host animals and their associated microbiomes. Both host and microbiome produce extracellular products that facilitate interaction within the holobiont. For example, microbes may provide nutrition for the animal host and protection against pathogens. The genomic study of bacterial cultures may shed light on the properties of novel symbiotic bacteria isolated from marine holobionts. In this study, we performed a genome-based analysis of Pseudovibrio brasiliensis Ab134<sup>T</sup> isolated from the sponge Arenosclera brasiliensis. This novel strain is phylogenetically related to Pseudovibrio denitrificans. In silico DNA-DNA hybridization and calculation of the average amino acid identity between the strain Ab134<sup>T</sup> and P. denitrificans JCM 12308<sup>T</sup> showed <70% similarity and <95% identity, respectively. This novel bacterial species possesses genomic features that hint at several possible roles in symbiosis (e.g., production of secondary metabolites, including bromotyrosine-derived alkaloids) in sponge and coral holobionts. We also detected gene clusters encoding type III, type IV, and type VI secretion systems and 26 toxin-like proteins, including probable paralogs. Our results demonstrate the genome versatility of P. brasiliensis Ab134<sup>T</sup> and the potential to attach to host cells, which may play a role in its symbiotic lifestyle.</p

    Image3.TIFF

    No full text
    <p>Sponge holobionts are defined as the host animals and their associated microbiomes. Both host and microbiome produce extracellular products that facilitate interaction within the holobiont. For example, microbes may provide nutrition for the animal host and protection against pathogens. The genomic study of bacterial cultures may shed light on the properties of novel symbiotic bacteria isolated from marine holobionts. In this study, we performed a genome-based analysis of Pseudovibrio brasiliensis Ab134<sup>T</sup> isolated from the sponge Arenosclera brasiliensis. This novel strain is phylogenetically related to Pseudovibrio denitrificans. In silico DNA-DNA hybridization and calculation of the average amino acid identity between the strain Ab134<sup>T</sup> and P. denitrificans JCM 12308<sup>T</sup> showed <70% similarity and <95% identity, respectively. This novel bacterial species possesses genomic features that hint at several possible roles in symbiosis (e.g., production of secondary metabolites, including bromotyrosine-derived alkaloids) in sponge and coral holobionts. We also detected gene clusters encoding type III, type IV, and type VI secretion systems and 26 toxin-like proteins, including probable paralogs. Our results demonstrate the genome versatility of P. brasiliensis Ab134<sup>T</sup> and the potential to attach to host cells, which may play a role in its symbiotic lifestyle.</p

    Image5.TIF

    No full text
    <p>Sponge holobionts are defined as the host animals and their associated microbiomes. Both host and microbiome produce extracellular products that facilitate interaction within the holobiont. For example, microbes may provide nutrition for the animal host and protection against pathogens. The genomic study of bacterial cultures may shed light on the properties of novel symbiotic bacteria isolated from marine holobionts. In this study, we performed a genome-based analysis of Pseudovibrio brasiliensis Ab134<sup>T</sup> isolated from the sponge Arenosclera brasiliensis. This novel strain is phylogenetically related to Pseudovibrio denitrificans. In silico DNA-DNA hybridization and calculation of the average amino acid identity between the strain Ab134<sup>T</sup> and P. denitrificans JCM 12308<sup>T</sup> showed <70% similarity and <95% identity, respectively. This novel bacterial species possesses genomic features that hint at several possible roles in symbiosis (e.g., production of secondary metabolites, including bromotyrosine-derived alkaloids) in sponge and coral holobionts. We also detected gene clusters encoding type III, type IV, and type VI secretion systems and 26 toxin-like proteins, including probable paralogs. Our results demonstrate the genome versatility of P. brasiliensis Ab134<sup>T</sup> and the potential to attach to host cells, which may play a role in its symbiotic lifestyle.</p

    Image6.TIFF

    No full text
    <p>Sponge holobionts are defined as the host animals and their associated microbiomes. Both host and microbiome produce extracellular products that facilitate interaction within the holobiont. For example, microbes may provide nutrition for the animal host and protection against pathogens. The genomic study of bacterial cultures may shed light on the properties of novel symbiotic bacteria isolated from marine holobionts. In this study, we performed a genome-based analysis of Pseudovibrio brasiliensis Ab134<sup>T</sup> isolated from the sponge Arenosclera brasiliensis. This novel strain is phylogenetically related to Pseudovibrio denitrificans. In silico DNA-DNA hybridization and calculation of the average amino acid identity between the strain Ab134<sup>T</sup> and P. denitrificans JCM 12308<sup>T</sup> showed <70% similarity and <95% identity, respectively. This novel bacterial species possesses genomic features that hint at several possible roles in symbiosis (e.g., production of secondary metabolites, including bromotyrosine-derived alkaloids) in sponge and coral holobionts. We also detected gene clusters encoding type III, type IV, and type VI secretion systems and 26 toxin-like proteins, including probable paralogs. Our results demonstrate the genome versatility of P. brasiliensis Ab134<sup>T</sup> and the potential to attach to host cells, which may play a role in its symbiotic lifestyle.</p

    Image4.TIF

    No full text
    <p>Sponge holobionts are defined as the host animals and their associated microbiomes. Both host and microbiome produce extracellular products that facilitate interaction within the holobiont. For example, microbes may provide nutrition for the animal host and protection against pathogens. The genomic study of bacterial cultures may shed light on the properties of novel symbiotic bacteria isolated from marine holobionts. In this study, we performed a genome-based analysis of Pseudovibrio brasiliensis Ab134<sup>T</sup> isolated from the sponge Arenosclera brasiliensis. This novel strain is phylogenetically related to Pseudovibrio denitrificans. In silico DNA-DNA hybridization and calculation of the average amino acid identity between the strain Ab134<sup>T</sup> and P. denitrificans JCM 12308<sup>T</sup> showed <70% similarity and <95% identity, respectively. This novel bacterial species possesses genomic features that hint at several possible roles in symbiosis (e.g., production of secondary metabolites, including bromotyrosine-derived alkaloids) in sponge and coral holobionts. We also detected gene clusters encoding type III, type IV, and type VI secretion systems and 26 toxin-like proteins, including probable paralogs. Our results demonstrate the genome versatility of P. brasiliensis Ab134<sup>T</sup> and the potential to attach to host cells, which may play a role in its symbiotic lifestyle.</p
    corecore