43 research outputs found

    Energy level determination in bulk heterojunction systems using photoemission yield spectroscopy: case of P3HT:PCBM

    Get PDF
    Financial support provided by Scientific Research Project for Students and Young Researchers Nr. SJZ2015/20 realized at the Institute of Solid State Physics, University of Latvia, is greatly acknowledged. This work has been supported by the Latvian State Research Program on Multifunctional Materials IMIS2. Jennifer Mann from Physical Electronics is greatly acknowledged for providing UPS data.Ultraviolet photoelectron spectroscopy (UPS) is commonly used method for energy level determination using planar heterojunction samples in either metal/organic or organic/organic systems. Only some attempts have been made in the study of bulk heterojunction systems. Photoemission yield spectroscopy (PYS) could be applied as a method for organic compound–organic compound interface studies in bulk heterojunction samples. Contrary to the UPS, PYS method does not require ultra-high vacuum, which simplifies experiment setup. Also, scanning depth of PYS is in the range of tens of nanometers, which allows studying deeper layers of the sample instead of only surface layer. In this work, poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) bulk heterojunction thin films were studied as a model system. A mass ratio between P3HT and PCBM in the system was varied from 1:0 to 1:50. Ionization energy dependence on this ratio was studied using two methods: UPS and PYS. To study the influence of the sample morphology on the PYS measurements and obtainable results, phase-separated and homogeneously distributed samples were prepared for analyses. P3HT ionization energy shift of 0.40 eV was observed in the samples made from chloroform solution. Experiments showed the need for a low degree of phase separation between P3HT and PCBM to observe P3HT ionization energy shift using PYS. On the contrary, no ionization energy shift of P3HT was observed in the UPS measurements for the same systems.Latvian State Research Program IMIS2; ISSP UL Scientific Research Project for Students and Young Researchers No. SJZ2015/20; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Influence of organic material and sample parameters on the surface potential in Kelvin probe measurements

    Get PDF
    Financial support provided by ERDF 1.1.1.1 activity project Nr. 1.1.1.1/16/A/046 “Application assessment of novel organic materials by prototyping of photonic devices” as well as Scientific Research Project for Students and Young Researchers Nr. SJZ2016/20 realized at the Institute of Solid State Physics, University of Latvia is greatly acknowledged.Scanning Kelvin probe is a method for material surface studies. It is used to determine the work function of metals. In the case of organic semiconductors, the measured surface potential is considered to be the Fermi level of the material which has been shown in some cases. But in most papers, the surface potential dependence on the metal electrode or film thickness was observed. Material properties and their influence on the measured surface potential and its relation to the Fermi level previously have not been systematically studied. In this work, the surface potential was measured for different materials—metal, organic dielectric material, and organic semiconductors. In most of the cases, the obtained surface potential was dependent on the metal electrode work function. This dependence decreased with the increase in electrical conductivity of the material. Several materials were chosen for studies where sample thickness was varied. Results showed that for most of the studied semiconductors the sample thickness of around 1.5–2 ”m was required to obtain surface potential values which do not depend on the electrode work function.ERDF 1.1.1.1 activity project Nr. 1.1.1.1/16/A/046; ISSP UL Scientific Research Project for Students and Young Researchers No SJZ2016/20; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Energy level determination in bulk heterojunction systems using photoemission yield spectroscopy: case of P3HT:PCBM

    Get PDF
    Financial support provided by Scientific Research Project for Students and Young Researchers Nr. SJZ2015/20 realized at the Institute of Solid State Physics, University of Latvia, is greatly acknowledged. This work has been supported by the Latvian State Research Program on Multifunctional Materials IMIS2. Jennifer Mann from Physical Electronics is greatly acknowledged for providing UPS data.Ultraviolet photoelectron spectroscopy (UPS) is commonly used method for energy level determination using planar heterojunction samples in either metal/organic or organic/organic systems. Only some attempts have been made in the study of bulk heterojunction systems. Photoemission yield spectroscopy (PYS) could be applied as a method for organic compound–organic compound interface studies in bulk heterojunction samples. Contrary to the UPS, PYS method does not require ultra-high vacuum, which simplifies experiment setup. Also, scanning depth of PYS is in the range of tens of nanometers, which allows studying deeper layers of the sample instead of only surface layer. In this work, poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) bulk heterojunction thin films were studied as a model system. A mass ratio between P3HT and PCBM in the system was varied from 1:0 to 1:50. Ionization energy dependence on this ratio was studied using two methods: UPS and PYS. To study the influence of the sample morphology on the PYS measurements and obtainable results, phase-separated and homogeneously distributed samples were prepared for analyses. P3HT ionization energy shift of 0.40 eV was observed in the samples made from chloroform solution. Experiments showed the need for a low degree of phase separation between P3HT and PCBM to observe P3HT ionization energy shift using PYS. On the contrary, no ionization energy shift of P3HT was observed in the UPS measurements for the same systems.Latvian State Research Program IMIS2; ISSP UL Scientific Research Project for Students and Young Researchers No. SJZ2015/20; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Stimulated emission and optical properties of pyranyliden fragment containing compounds in PVK matrix

    Get PDF
    This work has been supported by National Research program “Multifunctional materials and composites, photonics and nanotechnology (IMIS2)”. Financial support provided by Scientific Research Project for Students and Young Researchers No. SJZ2015/12 realised at the Institute of Solid State Physics, University of Latvia is greatly acknowledged.Organic solid state lasers are thoughtfully investigated due to their potential applications in communication, sensors, biomedicine, etc. Low amplified spontaneous emission (ASE) excitation threshold value is essential for further use of the material in devices. Intramolecular interaction limits high molecule density load in the matrix. It is the case of the well-known red light emitting laser dye - 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM). The lowest ASE threshold value of the mentioned laser dye could be obtained within the concentration range between 2 and 4 wt%. At higher concentration threshold energy drastically increases. In this work optical and ASE properties of three original DCM derivatives in poly(N-vinylcarbazole) (PVK) at various concentrations will be discussed. One of the derivatives is modified DCM dye in which the methyl substituents in the electron donor part have been replaced with bulky trityloxyethyl groups (DWK-1). These sterically significant functional groups do not influence electron transitions in the dye but prevent aggregation of the molecules. The chemical structure of the second investigated compound is similar to DWK-1 where the methyl group is replaced with the tert-butyl substituent (DWK-1TB). The third derivative (DWK-2) consists of two N,N-di(trityloxyethyl)amino electron donor groups. All results were compared with DCM:PVK system. Photoluminescence quantum yield (PLQY) is up to ten times larger for DWK-1TB with respect to DCM systems. Bulky trityloxyethyl groups prevent aggregation of the molecules thus decreasing interaction between dyes and amount of non-radiative decays. The red shift of the photoluminescence and amplified spontaneous emission at higher concentrations were observed due to the solid state solvation effect. The increase of the investigated dye density in the matrix with a smaller reduction in PLQY resulted in low ASE threshold energy. The lowest threshold value was obtained around 21 ÎŒJ/cm2 (2.1 kW/cm2) in DWK-1TB:PVK films.National Research program IMIS2; ISSP UL Scientific Research Project for Students and Young Researchers No SJZ2015/12; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Investigation of photoluminescence and amplified spontaneous emission properties of cyanoacetic acid derivative (KTB) in PVK amorphous thin films

    Get PDF
    This work was supported by European Regional Development Fund within the Project No. 1.1.1.1/16/A/046 and A.Riekstins SIA “Mikrotīkls” donation, administered by University of Latvia Foundation.In this work photoluminescence and amplified spontaneous emission properties of new original 2-cyanoacetic acid derivative in different concentration mixed in polyvinyl carbazole (PVK) matrix were investigated. Ethyl 2-(2-(4-(bis(2- (trityloxy)ethyl)amino)styryl)-6-tert-butyl-4H-pyran-4-ylidene)-2-cyanoacetate (KTB) is recently synthesised nonsymmetric red light emitting laser dye, that in previous experiments with neat thin films showed low amplified spontaneous emission (ASE) threshold value. Based on PVK high refractive index it has been used as a polymer to ensure the preparation of good planar waveguide. Luminescence quenching is expected in neat amorphous thin films according to previous experiments which reduces photoluminescence quantum yield and increases ASE excitation threshold energy. It could be overcome by a decrease of the intermolecular interactions between laser active molecules by doping them in polymer matrix thereby decreasing photoluminescence quenching effect in the system by increasing distance between organic molecules which in turn results in lowering ASE excitation threshold energy. The lowest threshold value of ASE was achieved at 20wt% of KTB molecule in PVK matrix. Ability to significantly decrease intermolecular interactions and excitation threshold energy of investigated compound in host-guest systems makes it promising to be used as a laser dye in preparation of organic solid state lasers.ERDF 1.1.1.1/16/A/046; SIA "MikroTik" through University of Latvia Foundation; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Photovoltaic effect in bulk heterojunction system with glass forming indandione derivative DMABI-6Ph

    Get PDF
    The aim of the work is to evaluate possible use of 2-[[4-(bis(2-trityloxyethyl)amino)phenyl]methylene]indane-1,3-dione (DMABI-6Ph) as light absorbing material for solar cells. DMABI-6Ph is a perspective material due to its good photoelectrical, thermal and chemical properties. The main advantage of DMABI-6Ph is its ability to form amorphous films by wet-casting methods thus allowing using the compound in organic solar cells made from solution. For now most popular materials for solution processable solar cells are polymer P3HT and fullerene derivative PCBM, but lot of investigations are in the field of new low molecular weight materials to replace the polymer. Photoelectrical measurements were made to determine molecule ionization and electron affinity levels of DMABI-6Ph. Difference of 2.06 eV between DMABI-6Ph ionization level and PCBM affinity level was obtained. Accordingly open circuit voltage of system DMABI-6Ph:PCBM was measured up to 0.78 V. The best power conversation efficiency was 0.11 % for the DMABI-6Ph:PCBM mass fraction 2:1. Limiting factor for high efficiency could be low charge carrier mobility which can be increase by additional DMABI-6Ph modification.European Social Fund Project No. 2013/0045/1DP/1.1.1.2.0/13/APIA/VIAA/018; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Glass-forming nonsymmetric DWK-dyes with 5,5,5-triphenylpentyl and piparazine moieties for light-amplification studies

    Get PDF
    This work has been supported by the European Regional Development Fund within the Activity 1.1.1.2 “Post-doctoral Research Aid” of the Specific Aid Objective 1.1.1 “To increase the research and innovative capacity of scientific institutions of Latvia and the ability to attract external financing, investing in human resources and infrastructure” of the Operational Programme “Growth and Employment” (No. 1.1.1.2/VIAA/1/16/035). Financial support provided by A. Riekstins SIA “MikrotÄ«kls” donation, administered by the University of Latvia is greatly appreciated. There are no conflicts of interest to declare.A series of 2,6-bis-styryl-4H-pyran-4-ylidene fragment containing glass-forming organic compounds with bonded amorphous phase promoting bulky triphenyl moieties through piperazine structural fragment [2-(2-(4-(bis(2-(trityloxy)ethyl)amino)styryl)-6-methyl-4H-pyran-4ylidene)malononitrile derivatives (DWK)-T dyes] in a form of (5,5,5-triphenylpentyl)piperazin-1-yl)styryl)-substituent attached to the 4H-pyran-4-yliden fragment in two-position have been synthesized and investigated as the potential light-amplification medium for organic solid-state lasers. DWK-T dye physical properties also depend on the structure of the other styryl-substituent attached to the 4H-pyran-4-ylidene backbone fragment in six-position. Thermal stability of synthesized dyes is above 312°C with the glass transitions from 97°C and up to 109°C. Obtained neat pure spin-cast films based on these compounds show photoluminescence with λmax in range from 672 to 695 nm, ASE λmax from 690 to 704 nm with ASE threshold values in range from 327 to 1091 ÎŒJ / cm2, which are mostly influenced by the nature of the electron transition characteristics of various four substituents in a 6-styryl-fragment. The proposed synthetic approach could be useful for obtaining chemically stable and covalently bonded bulky triphenyl group containing glassy dyes, while the synthetic design allows to acquire different nonsymmetric 2,6-bis-styryl-4H-pyran-4-ylidene fragment-containing compounds for red and infrared light-emitting and light amplification applications.European Regional Development Fund 1.1.1.2/VIAA/1/16/035; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Photophysical and Electrical Properties of Highly Luminescent 2/6-Triazolyl-Substituted Push-Pull Purines

    Get PDF
    This work is supported by the ERDF 1.1.1.1. activity project No. 1.1.1.1/16/A/131. The authors thank Dr. sc. ing. Jānis Zicāns and Dr. sc. ing. Remo Merijs Meri for DSC analyses.New push-pull N(9)-alkylated 6-piperidino-2-triazolylpurine and 2-piperidino-6-triazolylpurine derivatives are synthesized, and their optical and optoelectronic properties are comprehensively characterized with experimental and computational methods. The compounds possess intense violet or blue fluorescence with fluorescence quantum yields of up to 91% in solution and 40% in host-free films. Depending on their structural composition, the compounds have ionization energy in the range of 5.25-6.04 eV, electron affinity of 2.18-3.15 eV, and triplet energy of 2.52-2.95 eV. Due to the presence of hole-transporting purine and electron-transporting triazole fragments, compounds exhibit bipolar charge-transportation ability. Despite the favorable emissive properties of the studied push-pull purines, their electroluminescence in thin films is quenched owing to large current densities that are present even at a moderate driving voltage. This marks application directions related to a predominantly charge-transportation functionality as the most suitable for this compound class. © Article published under the CC BY licence.European Regional Development Fund 1.1.1.1, 1.1.1.1/16/A/131; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2

    Development of Bi2S3 thin film solar cells by close-spaced sublimation and analysis of absorber bulk defects via in-depth photoluminescence analysis

    Get PDF
    This study was funded by the Estonian Research Council projects PSG689 “Bismuth Chalcogenide Thin-Film Disruptive Green Solar Technology for Next Generation Photovoltaics”, PRG627 “Antimony chalcogenide thin films for next-generation semi-transparent solar cells applicable in electricity producing windows”, and PRG1023; the Estonian Centre of Excellence project TK141 (TAR16016EK, TAR16016) “Advanced materials and high-technology devices for energy recuperation systems”, and the European Union's H2020 programme under the ERA Chair project 5GSOLAR grant agreement No 952509.The emergence of new PV applications in society requires the design of new materials and devices based on green and earth-abundant elements, with a different set of properties and wider applicability. In this perspective, Bi2S3 semiconductor material have gained attention as a defect-tolerant, non-toxic, and highly stable material for earth-abundant thin film PV technologies. Related to Bi2S3 non-toxic nature, so far it has been very popular to synthesize the material by chemical solution routes, while little research efforts have been dedicated to absorber deposition by physical deposition techniques. In particular, there are no studies on absorber development via rapid, high-volume, and in-line close-spaced sublimation technique. Moreover, in-depth analysis of material defects employing low temperature-dependent photoluminescence (PL) remains largely unexplored. In this work, we systematically study the impact of close-spaced sublimation (CSS) conditions on Bi2S3 absorber growth on various substrates, employing a wide range of source (400–600 °C) and substrate (200–400 °C) temperatures. CSS source temperature of 550 °C and substrate temperature of 400–450 °C were identified as optimal temperatures (grown either on glass, TiO2, or CdS substrates), allowing the fabrication of uniform and dense Bi2S3 films with enhanced [221]-oriented grains. For the first time, a proof of concept solar cell with CSS Bi2S3 is demonstrated and an in-depth analysis on the interrelation between grain structure, interface recombination, and device performance is provided. Employing low-temperature dependence PL, new and complementary insights on possible defects and recombination mechanisms are presented.--//-- M. Koltsov, S.V. Gopi, T. Raadik, J. Krustok, R. Josepson, R. GrĆŸibovskis, A. Vembris, N. Spalatu, Development of Bi2S3 thin film solar cells by close-spaced sublimation and analysis of absorber bulk defects via in-depth photoluminescence analysis, Solar Energy Materials and Solar Cells, Volume 254, 2023, 112292, ISSN 0927-0248, https://doi.org/10.1016/j.solmat.2023.112292.(https://www.sciencedirect.com/science/article/pii/S0927024823001137) Published under the CC BY-NC-ND licence.Estonian Research Council projects PSG689, PRG627 and PRG1023; Estonian Centre of Excellence project TK141 (TAR16016EK, TAR16016); the European Union's H2020 programme under the ERA Chair project 5GSOLAR grant agreement No 952509; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2
    corecore