13 research outputs found

    A tidal disruption event coincident with a high-energy neutrino

    No full text
    Cosmic neutrinos provide a unique window into the otherwise hidden mechanism of particle acceleration in astrophysical objects. The IceCube Collaboration recently reported the likely association of one high-energy neutrino with a flare from the relativistic jet of an active galaxy pointed towards the Earth. However a combined analysis of many similar active galaxies revealed no excess from the broader population, leaving the vast majority of the cosmic neutrino flux unexplained. Here we present the likely association of a radio-emitting tidal disruption event, AT2019dsg, with a second high-energy neutrino. AT2019dsg was identified as part of our systematic search for optical counterparts to high-energy neutrinos with the Zwicky Transient Facility. The probability of finding any coincident radio-emitting tidal disruption event by chance is 0.5%, while the probability of finding one as bright in bolometric energy flux as AT2019dsg is 0.2%. Our electromagnetic observations can be explained through a multizone model, with radio analysis revealing a central engine, embedded in a UV photosphere, that powers an extended synchrotron-emitting outflow. This provides an ideal site for petaelectronvolt neutrino production. Assuming that the association is genuine, our observations suggest that tidal disruption events with mildly relativistic outflows contribute to the cosmic neutrino flux

    The Tidal Disruption Event AT2021ehb: Evidence of Relativistic Disk Reflection, and Rapid Evolution of the Disk-Corona System

    Get PDF
    Abstract We present X-ray, UV, optical, and radio observations of the nearby (≈78 Mpc) tidal disruption event AT2021ehb/ZTF21aanxhjv during its first 430 days of evolution. AT2021ehb occurs in the nucleus of a galaxy hosting a≈107 M ⊙ black hole (M BH inferred from host galaxy scaling relations). High-cadence Swift and Neutron Star Interior Composition Explorer (NICER) monitoring reveals a delayed X-ray brightening. The spectrum first undergoes a gradual soft → hard transition and then suddenly turns soft again within 3 days at ÎŽ t≈272 days during which the X-ray flux drops by a factor of 10. In the joint NICER+NuSTAR observation (ÎŽ t = 264 days, harder state), we observe a prominent nonthermal component up to 30 keV and an extremely broad emission line in the iron K band. The bolometric luminosity of AT2021ehb reaches a maximum of 6.0 − 3.8 + 10.4 % L Edd when the X-ray spectrum is the hardest. During the dramatic X-ray evolution, no radio emission is detected, the UV/optical luminosity stays relatively constant, and the optical spectra are featureless. We propose the following interpretations: (i) the soft → hard transition may be caused by the gradual formation of a magnetically dominated corona; (ii) hard X-ray photons escape from the system along solid angles with low scattering optical depth (∌a few) whereas the UV/optical emission is likely generated by reprocessing materials with much larger column density—the system is highly aspherical; and (iii) the abrupt X-ray flux drop may be triggered by the thermal–viscous instability in the inner accretion flow, leading to a much thinner disk.</jats:p

    The plant perceptron connects environment to development

    No full text
    Plants cope with the environment in a variety of ways, and ecological analyses attempt to capture this through life-history strategies or trait-based categorization. These approaches are limited because they treat the trade-off mechanisms that underlie plant responses as a black box. Approaches that involve the molecular or physiological analysis of plant responses to the environment have elucidated intricate connections between developmental and environmental signals, but in only a few well-studied model species. By considering diversity in the plant response to the environment as the adaptation of an information-processing network, new directions can be found for the study of life-history strategies, trade-offs and evolution in plant

    The plant perceptron connects environment to development

    No full text

    Mechanistic Insights into Factor VIII Immune Tolerance Induction via Prenatal Cell Therapy in Hemophilia A

    No full text
    corecore