3,142 research outputs found

    Model for the spatio-temporal intermittency of the energy dissipation in turbulent flows

    Full text link
    Modeling the intermittent behavior of turbulent energy dissipation processes both in space and time is often a relevant problem when dealing with phenomena occurring in high Reynolds number flows, especially in astrophysical and space fluids. In this paper, a dynamical model is proposed to describe the spatio-temporal intermittency of energy dissipation rate in a turbulent system. This is done by using a shell model to simulate the turbulent cascade and introducing some heuristic rules, partly inspired by the well known pp-model, to construct a spatial structure of the energy dissipation rate. In order to validate the model and to study its spatially intermittency properties, a series of numerical simulations have been performed. These show that the level of spatial intermittency of the system can be simply tuned by varying a single parameter of the model and that scaling laws in agreement with those obtained from experiments on fully turbulent hydrodynamic flows can be recovered. It is finally suggested that the model could represent a useful tool to simulate the spatio-temporal intermittency of turbulent energy dissipation in those high Reynolds number astrophysical fluids where impulsive energy release processes can be associated to the dynamics of the turbulent cascade.Comment: 22 pages, 9 figure

    Spice-up your coding lessons with the ACME approach

    Get PDF
    It is nowadays considered a fundamental skill for students and citizens the capacity of undertaking a problem-solving process in various disciplines (including STEM, i.e. science, technology, engineering and mathematics) using distinctive techniques that are typical of computer science. These abilities are usually called Computational Thinking and at the roots of them stands the knowledge of coding. With the goal of encouraging Computational Thinking in young students, we discuss tools and techniques to support the teaching and the learning of coding in school curricula. It is well known that this problem is complex due to the fact that it requires abstraction capabilities and complex cognitive skills such as procedural and conditional reasoning, planning, and analogical reasoning. In this paper, we present ACME (“Code Animation by Evolved Metaphors”) that stands at the foundation of the Diogene-CT code visualization environment and methodology. We discuss visual metaphors for both procedural and object-oriented programming. Based on them, we introduce a playground architecture to support teaching and learning of the principles of coding. To the best of our knowledge, this is the first scalable code visualization tool using consistent metaphors in the field of Computing Education Research (CER)

    Diogene-CT: tools and methodologies for teaching and learning coding

    Get PDF
    Computational thinking is the capacity of undertaking a problem-solving process in various disciplines (including STEM, i.e. science, technology, engineering and mathematics) using distinctive techniques that are typical of computer science. It is nowadays considered a fundamental skill for students and citizens, that has the potential to affect future generations. At the roots of computational-thinking abilities stands the knowledge of computer programming, i.e. coding. With the goal of fostering computational thinking in young students, we address the challenging and open problem of using methods, tools and techniques to support teaching and learning of computer-programming skills in school curricula of the secondary grade and university courses. This problem is made complex by several factors. In fact, coding requires abstraction capabilities and complex cognitive skills such as procedural and conditional reasoning, planning, and analogical reasoning. In this paper, we introduce a new paradigm called ACME (“Code Animation by Evolved Metaphors”) that stands at the foundation of the Diogene-CT code visualization environment and methodology. We develop consistent visual metaphors for both procedural and object-oriented programming. Based on the metaphors, we introduce a playground architecture to support teaching and learning of the principles of coding. To the best of our knowledge, this is the first scalable code visualization tool using consistent metaphors in the field of the Computing Education Research (CER). It might be considered as a new kind of tools named as code visualization environments

    Persistence of small-scale anisotropy of magnetic turbulence as observed in the solar wind

    Get PDF
    The anisotropy of magnetophydrodynamic turbulence is investigated by using solar wind data from the Helios 2 spacecraft. We investigate the behaviour of the complete high-order moment tensors of magnetic field increments and we compare the usual longitudinal structure functions which have both isotropic and anisotropic contributions, to the fully anisotropic contribution. Scaling exponents have been extracted by an interpolation scaling function. Unlike the usual turbulence in fluid flows, small-scale magnetic fluctuations remain anisotropic. We discuss the radial dependence of both anisotropy and intermittency and their relationship.Comment: 7 pages, 2 figures, in press on Europhys. Let

    Complete compensation of criss-cross deflection in a negative ion accelerator by magnetic technique

    Get PDF
    During 2016, a joint experimental campaign was carried out by QST and Consorzio RFX on the Negative Ion Test Stand (NITS) at the QST Naka Fusion Institute, Japan, with the purpose of validating some design solutions adopted in MITICA, which is the full-scale prototype of the ITER NBI, presently under construction at Consorzio RFX, Padova, Italy. The main purpose of the campaign was to test a novel technique, for suppressing the beamlet criss-cross magnetic deflection. This new technique, involving a set of permanent magnets embedded in the Extraction Grid, named Asymmetric Deflection Compensation Magnets (ADCM), is potentially more performing and robust than the traditional electrostatic compensation methods. The results of this first campaign confirmed the effectiveness of the new magnetic configuration in reducing the criss-cross magnetic deflection. Nonetheless, contrary to expectations, a complete deflection correction was not achieved. By analyzing in detail the results, we found indications that a physical process, taking place just upstream of the plasma grid, was giving an important contribution to the final deflection of the negative ion beam. This process appears to be related to the drift of negative ions inside the plasma source, in the presence of a magnetic field transverse to the extraction direction, and results in a non-uniform ion current density extracted at the meniscus. Therefore, the numerical models adopted in the design were improved by including this previously disregarded effect, so as to obtain a much better matching with the experimental results. Based on the results of the first campaign, new permanent magnets were designed and installed on the Extraction Grid of NITS. A second QST-Consorzio RFX joint experimental campaign was then carried out in 2017, demonstrating the complete correction of the criss-cross deflection and confirming the validity of the novel magnetic configuration and of the hypothesis behind the new models. This contribution presents the results of the second joint experimental campaign on NITS along with the overall data analysis of both campaigns, and the description of the improved models. A general picture is given of the relation among magnetic field, beam energy, meniscus non-uniformity and beamlet deflection, constituting a useful database for the design of future machines

    Undamped electrostatic plasma waves

    Full text link
    Electrostatic waves in a collision-free unmagnetized plasma of electrons with fixed ions are investigated for electron equilibrium velocity distribution functions that deviate slightly from Maxwellian. Of interest are undamped waves that are the small amplitude limit of nonlinear excitations, such as electron acoustic waves (EAWs). A deviation consisting of a small plateau, a region with zero velocity derivative over a width that is a very small fraction of the electron thermal speed, is shown to give rise to new undamped modes, which here are named {\it corner modes}. The presence of the plateau turns off Landau damping and allows oscillations with phase speeds within the plateau. These undamped waves are obtained in a wide region of the (k,ωR)(k,\omega_{_R}) plane (ωR\omega_{_R} being the real part of the wave frequency and kk the wavenumber), away from the well-known `thumb curve' for Langmuir waves and EAWs based on the Maxwellian. Results of nonlinear Vlasov-Poisson simulations that corroborate the existence of these modes are described. It is also shown that deviations caused by fattening the tail of the distribution shift roots off of the thumb curve toward lower kk-values and chopping the tail shifts them toward higher kk-values. In addition, a rule of thumb is obtained for assessing how the existence of a plateau shifts roots off of the thumb curve. Suggestions are made for interpreting experimental observations of electrostatic waves, such as recent ones in nonneutral plasmas.Comment: 11 pages, 10 figure

    Observation of inertial energy cascade in interplanetary space plasma

    Get PDF
    We show in this article direct evidence for the presence of an inertial energy cascade, the most characteristic signature of hydromagnetic turbulence (MHD), in the solar wind as observed by the Ulysses spacecraft. After a brief rederivation of the equivalent of Yaglom's law for MHD turbulence, we show that a linear relation is indeed observed for the scaling of mixed third order structure functions involving Els\"asser variables. This experimental result, confirming the prescription stemming from a theorem for MHD turbulence, firmly establishes the turbulent character of low-frequency velocity and magnetic field fluctuations in the solar wind plasma

    Turbulence generation during the head-on collision of Alfvénic wave packets.

    Get PDF
    The description of the Moffatt and Parker problem recently revisited by O. Pezzi et al. [Astrophys. J. 834, 166 (2017)1538-435710.3847/1538-4357/834/2/166] is here extended by analyzing the features of the turbulence produced by the interaction of two colliding Alfvénic wave packets in a kinetic plasma. Although the approach based on the presence of linear modes features is still helpful in characterizing some low-energy fluctuations, other signatures, which go beyond the pure linear modes analysis, are recovered, such as the significant weakening of clear dispersion relations and the production of zero frequency fluctuations
    • …
    corecore