1,694 research outputs found
Supersymmetry in the Standard Model
We prove that the bosons and massless fermions of one generation of the
standard model are supersymmetric partners of each other. Except for one
additional auxilliary vector boson, there are no other SUSY particles.Comment: RevTex, 6 pages, uuencoded tar compressed fil
Low-Energy Effective Theory, Unitarity, and Non-Decoupling Behavior in a Model with Heavy Higgs-Triplet Fields
We discuss the properties of a model incorporating both a scalar electroweak
Higgs doublet and an electroweak Higgs triplet. We construct the low-energy
effective theory for the light Higgs-doublet in the limit of small (but
nonzero) deviations in the rho parameter from one, a limit in which the triplet
states become heavy. For small deviations in the rho parameter from one,
perturbative unitarity of WW scattering breaks down at a scale inversely
proportional to the renormalized vacuum expectation value of the triplet field
(or, equivalently, inversely proportional to the square-root of the deviation
of the rho parameter from one). This result imposes an upper limit on the
mass-scale of the heavy triplet bosons in a perturbative theory; we show that
this upper bound is consistent with dimensional analysis in the low-energy
effective theory. Recent articles have shown that the triplet bosons do not
decouple, in the sense that deviations in the rho parameter from one do not
necessarily vanish at one-loop in the limit of large triplet mass. We clarify
that, despite the non-decoupling behavior of the Higgs-triplet, this model does
not violate the decoupling theorem since it incorporates a large dimensionful
coupling. Nonetheless, we show that if the triplet-Higgs boson masses are of
order the GUT scale, perturbative consistency of the theory requires the
(properly renormalized) Higgs-triplet vacuum expectation value to be so small
as to be irrelevant for electroweak phenomenology.Comment: Revtex, 11 pages, 7 eps figures included; references updated and
three footnotes adde
PIP3-dependent macropinocytosis is incompatible with chemotaxis
In eukaryotic chemotaxis, the mechanisms connecting external signals to the motile apparatus remain unclear. The role of the lipid phosphatidylinositol 3,4,5-trisphosphate (PIP3) has been particularly controversial. PIP3 has many cellular roles, notably in growth control and macropinocytosis as well as cell motility. Here we show that PIP3 is not only unnecessary for Dictyostelium discoideum to migrate toward folate, but actively inhibits chemotaxis. We find that macropinosomes, but not pseudopods, in growing cells are dependent on PIP3. PIP3 patches in these cells show no directional bias, and overall only PIP3-free pseudopods orient up-gradient. The pseudopod driver suppressor of cAR mutations (SCAR)/WASP and verprolin homologue (WAVE) is not recruited to the center of PIP3 patches, just the edges, where it causes macropinosome formation. Wild-type cells, unlike the widely used axenic mutants, show little macropinocytosis and few large PIP3 patches, but migrate more efficiently toward folate. Tellingly, folate chemotaxis in axenic cells is rescued by knocking out phosphatidylinositide 3-kinases (PI 3-kinases). Thus PIP3 promotes macropinocytosis and interferes with pseudopod orientation during chemotaxis of growing cells
Dropping rho and A_1 Meson Masses at Chiral Phase Transition in the Generalized Hidden Local Symmetry
We study the chiral symmetry restoration using the generalized hidden local
symmetry (GHLS) which incorporates the rho and A_1 mesons as the gauge bosons
of the GHLS and the pion as the Nambu-Goldstone boson consistently with the
chiral symmetry of QCD. We show that a set of parameter relations, which
ensures the first and second Weinberg's sum rules, is invariant under the
renormalization group evolution. Then, we found that the Weinberg's sum rules
together with the matching of the vector and axial-vector current correlators
inevitably leads to {\it the dropping masses of both rho and A_1 mesons} at the
symmetry restoration point, and that the mass ratio as well as the mixing angle
between the pion and A_1 meson flows into one of three fixed points.Comment: 17 pages, 7 figures; references added and discussions expande
Approximate gauge symmetry of composite vector bosons
It can be shown in a solvable field theory model that the couplings of the
composite vector bosons made of a fermion pair approach the gauge couplings in
the limit of strong binding. Although this phenomenon may appear accidental and
special to the vector boson made of a fermion pair, we extend it to the case of
bosons being constituents and find that the same phenomenon occurs in more an
intriguing way. The functional formalism not only facilitates computation but
also provides us with a better insight into the generating mechanism of
approximate gauge symmetry, in particular, how the strong binding and global
current conservation conspire to generate such an approximate symmetry. Remarks
are made on its possible relevance or irrelevance to electroweak and higher
symmetries.Comment: Correction of typos. The published versio
Supersymmetric NLO QCD Corrections to Resonant Slepton Production and Signals at the Tevatron and the LHC
We compute the total cross section and the transverse momentum distribution
for single charged slepton and sneutrino production at hadronic colliders
including NLO supersymmetric and non-supersymmetric QCD corrections. The
supersymmetric QCD corrections can be substantial. We also resum the gluon
transverse momentum distribution and compare our results with two Monte Carlo
generators. We compute branching ratios of the supersymmetric decays of the
slepton and determine event rates for the like-sign dimuon final state at the
Tevatron and at the LHC.Comment: 14 pages, LaTeX, 8 figures, uses REVTex
Scales of Fermion Mass Generation and Electroweak Symmetry Breaking
The scale of mass generation for fermions (including neutrinos) and the scale
for electroweak symmetry breaking (EWSB) can be bounded from above by the
unitarity of scattering involving longitudinal weak gauge bosons or their
corresponding would-be Goldstone bosons. Including the exact n-body phase space
we analyze the 2 --> n () processes for the fermion-(anti)fermion
scattering into multiple gauge boson final states. Contrary to naive energy
power counting, we demonstrate that as becomes large, the competition
between an increasing energy factor and a phase-space suppression leads to a
{\it strong new upper bound} on the scale of fermion mass generation at a
finite value , which is {\it independent of the EWSB scale,} . For quarks, leptons and Majorana neutrinos, the
strongest 2 --> n limits range from about 3TeV to 130-170TeV (with ), depending on the measured fermion masses. Strikingly, given
the tiny neutrino masses as constrained by the neutrino oscillations,
neutrinoless double-beta decays and astrophysical observations, the unitarity
violation of scattering actually occurs at a scale no
higher than ~170 TeV. Implications for various mechanisms of neutrino mass
generation are analyzed. On the other hand, for the 2 --> n pure
Goldstone-boson scattering, we find that the decreasing phase space factor
always dominates over the growing overall energy factor when becomes large,
so that the best unitarity bound on the scale of EWSB remains at n=2.Comment: 67pp, to match PRD (minor typos fixed
- …