7 research outputs found

    Facilitating accessible, rapid, and appropriate processing of ancient metagenomic data with AMDirT [version 1; peer review: 1 approved, 1 approved with reservations]

    Get PDF
    Background: Access to sample-level metadata is important when selecting public metagenomic sequencing datasets for reuse in new biological analyses. The Standards, Precautions, and Advances in Ancient Metagenomics community (SPAAM, https://spaam-community.github.io) has previously published AncientMetagenomeDir, a collection of curated and standardised sample metadata tables for metagenomic and microbial genome datasets generated from ancient samples. However, while sample-level information is useful for identifying relevant samples for inclusion in new projects, Next Generation Sequencing (NGS) library construction and sequencing metadata are also essential for appropriately reprocessing ancient metagenomic data. Currently, recovering information for downloading and preparing such data is difficult when laboratory and bioinformatic metadata is heterogeneously recorded in prose-based publications. Methods: Through a series of community-based hackathon events, AncientMetagenomeDir was updated to provide standardised library-level metadata of existing and new ancient metagenomic samples. In tandem, the companion tool 'AMDirT' was developed to facilitate automated metadata curation and data validation, as well as rapid data filtering and downloading. Results: AncientMetagenomeDir was extended to include standardised metadata of over 5000 ancient metagenomic libraries. The companion tool 'AMDirT' provides both graphical- and command-line interface based access to such metadata for users from a wide range of computational backgrounds. We also report on errors with metadata reporting that appear to commonly occur during data upload and provide suggestions on how to improve the quality of data sharing by the community.Conclusions: Together, both standardised metadata and tooling will help towards easier incorporation and reuse of public ancient metagenomic datasets into future analyses.Bioarchaeolog

    Understanding the microbial biogeography of ancient human dentitions to guide study design and interpretation

    No full text
    The oral cavity is a heterogeneous environment, varying in factors such as pH, oxygen levels, and salivary flow. These factors affect the microbial community composition and distribution of species in dental plaque, but it is not known how well these patterns are reflected in archaeological dental calculus. In most archaeological studies, a single sample of dental calculus is studied per individual and is assumed to represent the entire oral cavity. However, it is not known if this sampling strategy introduces biases into studies of the ancient oral microbiome. Here, we present the results of a shotgun metagenomic study of a dense sampling of dental calculus from four Chalcolithic individuals from the southeast Iberian peninsula (ca. 4500–5000 BP). Interindividual differences in microbial composition are found to be much larger than intraindividual differences, indicating that a single sample can indeed represent an individual in most cases. However, there are minor spatial patterns in species distribution within the oral cavity that should be taken into account when designing a study or interpreting results. Finally, we show that plant DNA identified in the samples is likely of postmortem origin, demonstrating the importance of including environmental controls or additional lines of biomolecular evidence in dietary interpretations.Horizon 2020(H2020)StG- 677576Bioarchaeolog

    Understanding the microbial biogeography of ancient human dentitions to guide study design and interpretation

    Get PDF
    The oral cavity is a heterogeneous environment, varying in factors such as pH, oxygen levels, and salivary flow. These factors affect the microbial community composition and distribution of species in dental plaque, but it is not known how well these patterns are reflected in archaeological dental calculus. In most archaeological studies, a single sample of dental calculus is studied per individual and is assumed to represent the entire oral cavity. However, it is not known if this sampling strategy introduces biases into studies of the ancient oral microbiome. Here, we present the results of a shotgun metagenomic study of a dense sampling of dental calculus from four Chalcolithic individuals from the southeast Iberian peninsula (ca. 4500–5000 BP). Interindividual differences in microbial composition are found to be much larger than intraindividual differences, indicating that a single sample can indeed represent an individual in most cases. However, there are minor spatial patterns in species distribution within the oral cavity that should be taken into account when designing a study or interpreting results. Finally, we show that plant DNA identified in the samples is likely of postmortem origin, demonstrating the importance of including environmental controls or additional lines of biomolecular evidence in dietary interpretations.Horizon 2020(H2020)StG- 677576Bioarchaeolog

    The Significance of Oxidized Low-Density Lipoprotein in Body Fluids as a Marker Related to Diseased Conditions

    No full text

    Nonlinear Interactions of Light and Matter with Absorption

    No full text
    corecore