29 research outputs found
Anti-calmodulins and Tricyclic Adjuvants in Pain Therapy Block the TRPV1 Channel
Ca2+-loaded calmodulin normally inhibits multiple Ca2+-channels upon dangerous elevation of intracellular Ca2+ and protects cells from Ca2+-cytotoxicity, so blocking of calmodulin should theoretically lead to uncontrolled elevation of intracellular Ca2+. Paradoxically, classical anti-psychotic, anti-calmodulin drugs were noted here to inhibit Ca2+-uptake via the vanilloid inducible Ca2+-channel/inflamatory pain receptor 1 (TRPV1), which suggests that calmodulin inhibitors may block pore formation and Ca2+ entry. Functional assays on TRPV1 expressing cells support direct, dose-dependent inhibition of vanilloid-induced 45Ca2+-uptake at µM concentrations: calmidazolium (broad range)≥trifluoperazine (narrow range)>chlorpromazine/amitriptyline>fluphenazine>>W-7 and W-13 (only partially). Most likely a short acidic domain at the pore loop of the channel orifice functions as binding site either for Ca2+ or anti-calmodulin drugs. Camstatin, a selective peptide blocker of calmodulin, inhibits vanilloid-induced Ca2+-uptake in intact TRPV1+ cells, and suggests an extracellular site of inhibition. TRPV1+, inflammatory pain-conferring nociceptive neurons from sensory ganglia, were blocked by various anti-psychotic and anti-calmodulin drugs. Among them, calmidazolium, the most effective calmodulin agonist, blocked Ca2+-entry by a non-competitive kinetics, affecting the TRPV1 at a different site than the vanilloid binding pocket. Data suggest that various calmodulin antagonists dock to an extracellular site, not found in other Ca2+-channels. Calmodulin antagonist-evoked inhibition of TRPV1 and NMDA receptors/Ca2+-channels was validated by microiontophoresis of calmidazolium to laminectomised rat monitored with extracellular single unit recordings in vivo. These unexpected findings may explain empirically noted efficacy of clinical pain adjuvant therapy that justify efforts to develop hits into painkillers, selective to sensory Ca2+-channels but not affecting motoneurons
A Positive Feedback Synapse from Retinal Horizontal Cells to Cone Photoreceptors
Cone photoreceptors and horizontal cells (HCs) have a reciprocal synapse that
underlies lateral inhibition and establishes the antagonistic center-surround
organization of the visual system. Cones transmit to HCs through an excitatory
synapse and HCs feed back to cones through an inhibitory synapse. Here we report
that HCs also transmit to cone terminals a positive feedback signal that
elevates intracellular Ca2+ and accelerates neurotransmitter
release. Positive and negative feedback are both initiated by AMPA receptors on
HCs, but positive feedback appears to be mediated by a change in HC
Ca2+, whereas negative feedback is mediated by a change in
HC membrane potential. Local uncaging of AMPA receptor agonists suggests that
positive feedback is spatially constrained to active HC-cone synapses, whereas
the negative feedback signal spreads through HCs to affect release from
surrounding cones. By locally offsetting the effects of negative feedback,
positive feedback may amplify photoreceptor synaptic release without sacrificing
HC-mediated contrast enhancement
Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation
Background: The neuroinflammatory response following traumatic brain injury (TBI) is known to be a key secondary injury factor that can drive ongoing neuronal injury. Despite this, treatments that have targeted aspects of the inflammatory pathway have not shown significant efficacy in clinical trials. Main body: We suggest that this may be because classical inflammation only represents part of the story, with activation of neurogenic inflammation potentially one of the key initiating inflammatory events following TBI. Indeed, evidence suggests that the transient receptor potential cation channels (TRP channels), TRPV1 and TRPA1, are polymodal receptors that are activated by a variety of stimuli associated with TBI, including mechanical shear stress, leading to the release of neuropeptides such as substance P (SP). SP augments many aspects of the classical inflammatory response via activation of microglia and astrocytes, degranulation of mast cells, and promoting leukocyte migration. Furthermore, SP may initiate the earliest changes seen in blood-brain barrier (BBB) permeability, namely the increased transcellular transport of plasma proteins via activation of caveolae. This is in line with reports that alterations in transcellular transport are seen first following TBI, prior to decreases in expression of tight-junction proteins such as claudin-5 and occludin. Indeed, the receptor for SP, the tachykinin NK1 receptor, is found in caveolae and its activation following TBI may allow influx of albumin and other plasma proteins which directly augment the inflammatory response by activating astrocytes and microglia. Conclusions: As such, the neurogenic inflammatory response can exacerbate classical inflammation via a positive feedback loop, with classical inflammatory mediators such as bradykinin and prostaglandins then further stimulating TRP receptors. Accordingly, complete inhibition of neuroinflammation following TBI may require the inhibition of both classical and neurogenic inflammatory pathways.Frances Corrigan, Kimberley A. Mander, Anna V. Leonard and Robert Vin
Evaluation of blood bank practices in Karachi, Pakistan, and the government\u27s response
Background: National legislation in Pakistan regulating blood banks has been introduced several times, but has never been passed. To support provincial-level efforts to develop legislation we conducted a study to evaluate blood-banking practices in Karachi, Pakistan, to identify areas that could be improved.Methods: Thirty-seven blood banks were randomly selected from a list of 87 Karachi blood banks. The research team interviewed blood bank personnel, inspected available facilities and equipment, and observed blood collection using structured questionnaires and observation forms.Results: Of the 37 selected facilities, 25 were operational and 24 agreed to participate. Twelve (50%) of the facilities reported regularly utilizing paid blood donors, while only six (25%) activity recruited volunteer donors. During observation only 8% of facilities asked donors about injecting drug use, and none asked donors any questions about high-risk sexual behaviour. While 95% of blood banks had appropriate equipment and reagents to screen for hepatitis B, only 55% could screen for HIV and 23% for hepatitis C. Twenty-nine percent of the facilities were storing blood products outside the WHO recommended temperature limits.IMPLICATIONS: Practices at most Karachi blood banks fell well below WHO standards. Findings from this study were instrumental in developing and passing legislation to regulate blood transfusion throughout Sindh Province, and suggest a method for improving blood transfusion practices in other developing countries
RETRACTED ARTICLE: Cannabinoid Type 1 Receptor Availability in the Amygdala Mediates Threat Processing in Trauma Survivors
Attentional bias to threat is a key endophenotype that contributes to the chronicity of trauma-related psychopathology. However, little is known about the neurobiology of this endophenotype and no known in vivo molecular imaging study has been conducted to evaluate candidate receptor systems that may be implicated in this endophenotype or the phenotypic expression of trauma-related psychopathology that comprises threat (ie, re-experiencing, avoidance, and hyperarousal) and loss (ie, emotional numbing, depression/dysphoria, generalized anxiety) symptomatology. Using the radioligand [(11)C]OMAR and positron emission tomography (PET), we evaluated the relationship between in vivo cannabinoid receptor type 1 (CB1) receptor availability in the amygdala, and performance on a dot-probe measure of attentional bias to threat, and clinician interview-based measures of trauma-related psychopathology. The sample comprised adults presenting with a broad spectrum of trauma-related psychopathology, ranging from nontrauma-exposed, psychiatrically healthy adults to trauma-exposed adults with severe trauma-related psychopathology. Results revealed that increased CB1 receptor availability in the amygdala was associated with increased attentional bias to threat, as well as increased severity of threat, but not loss, symptomatology; greater peripheral anandamide levels were associated with decreased attentional bias to threat. A mediation analysis further suggested that attentional bias to threat mediated the relationship between CB1 receptor availability in the amygdala and severity of threat symptomatology. These data substantiate a key role for compromised endocannabinoid function in mediating both the endophenotypic and phenotypic expression of threat symptomatology in humans. They further suggest that novel pharmacotherapies that target the CB1 system may provide a more focused, mechanism-based approach to mitigating this core aspect of trauma-related psychopathology