16 research outputs found

    Antibacterial Activity of Plant Defensins Against Alfalfa Crown Rot Pathogens

    Get PDF
    Poster presentation at the 2017 meeting of the American Society for Microbiology.Alfalfa (Medicago sativa) is the fourth most widely grown crop in the United States. Alfalfa crown rot is a disease complex that severely decreases alfalfa stand density and productivity in all alfalfa-producing areas. Currently, there are no viable methods of disease control. Plant defensins are small cationic antimicrobial peptides with a conserved signature of cysteines. The in vitro and in planta antifungal activity of plant defensins has been extensively studied. However, their antibacterial activity has been less well characterized. Defensins have a γ-core motif, a cluster of cationic and hydrophobic residues, which is essential for antimicrobial activity. The γ-core motifs of five synthetic defensins were tested for antibacterial activity against the bacterial pathogens in the alfalfa crown rot disease complex. Full length defensins, expressed using a Pichia pastoris expression system, were tested to compare antibacterial activity. A spread plate method was used to quantify antibacterial activity of defensins. Bacteria were grown out to an OD600 value of 0.1, and a 200 μL culture was incubated with shaking for 3 hours with concentrations of defensin peptide up to 30 μg/mL. The bacteria were serially diluted, and 100 μL was plated on to NBY plates. After 48 hours of incubation, the bacterial colonies were counted. The amount of defensin needed to inhibit growth of pathogen strains by 50% (IC50) was calculated. The core motif of MtDef4 was shown to be the most effective truncated peptide with IC50 values of 3.4 μM against Pseudomonas syringae pv. syringae and 4.52 μM against Xanthomonas alfalfae. Also, the corresponding full length MtDef4 peptide was found to be active against P. syringae pv. syringae and X. alfalfae with IC50 values of 0.43 μM and 0.68 μM, respectively. These experiments show the previously overlooked high biological activity of plant defensins against bacterial pathogens. Additionally, these results indicate that the γ-core-motif can be used to predict biological activity of the full-length defensin, and that transgenic expression of plant defensins in alfalfa has the potential to lead to improved crown rot resistance

    Expression of apoplast-targeted plant defensin \u3ci\u3eMtDef4.2\u3c/i\u3e confers resistance to leaf rust pathogen \u3ci\u3ePuccinia triticina\u3c/i\u3e but does not affect mycorrhizal symbiosis in transgenic wheat

    Get PDF
    Rust fungi of the order Pucciniales are destructive pathogens of wheat worldwide. Leaf rust caused by the obligate, biotrophic basidiomycete fungus Puccinia triticina (Pt) is an economically important disease capable of causing up to 50 % yield losses. Historically, resistant wheat cultivars have been used to control leaf rust, but genetic resistance is ephemeral and breaks down with the emergence of new virulent Pt races. There is a need to develop alternative measures for control of leaf rust in wheat. Development of transgenic wheat expressing an antifungal defensin offers a promising approach to complement the endogenous resistance genes within the wheat germplasm for durable resistance to Pt. To that end, two different wheat genotypes, Bobwhite and Xin Chun 9 were transformed with a chimeric gene encoding an apoplast-targeted antifungal plant defensin MtDEF4.2 from Medicago truncatula. Transgenic lines from four independent events were further characterized. Homozygous transgenic wheat lines expressing MtDEF4.2 displayed resistance to Pt race MCPSS relative to the non-transgenic controls in growth chamber bioassays. Histopathological analysis suggested the presence of both pre- and posthaustorial resistance to leaf rust in these transgenic lines. MtDEF4.2 did not, however, affect the root colonization of a beneficial arbuscular mycorrhizal fungus Rhizophagus irregularis. This study demonstrates that the expression of apoplast-targeted plant defensin MtDEF4.2 can provide substantial resistance to an economically important leaf rust disease in transgenic wheat without negatively impacting its symbioti

    The exploration of potato-associated bacteria in the Central Andean Highlands and their application in integrated crop management systems

    No full text
    Potato is the most important food crop after wheat and rice. A changing climate, coupled with a heightened consumer awareness of how food is produced and legislative changes governing the usage of agrochemicals, means that alternative more integrated and sustainable approaches are needed for crop management practices. Bioprospecting in the Central Andean Highlands resulted in the isolation and in vitro screening of 600 bacterial isolates. The best performing isolates, under in vitro conditions, were field trialled in their home countries. Six of the isolates, Pseudomonas sp. R41805 (Bolivia), Pseudomonas palleroniana R43631 (Peru), Bacillus sp. R47065, R47131, Paenibacillus sp. B3a R49541, and Bacillus simplex M3-4 R49538 (Ecuador), showed significant increase in the yield of potato. Using – omic technologies (i.e. volatilomic, transcriptomic, proteomic and metabolomic), the influence of microbial isolates on plant defence responses was determined. Volatile organic compounds of bacterial isolates were identified using GC/MS. RT-qPCR analysis revealed the significant expression of Ethylene Response Factor 3 (ERF3) and the results of this study suggest that the dual inoculation of potato with Pseudomonas sp. R41805 and Rhizophagus irregularis MUCL 41833 may play a part in the activation of plant defence system via ERF3. The proteomic analysis by 2-DE study has shown that priming by Pseudomonas sp. R41805 can induce the expression of proteins related to photosynthesis and protein folding in in vitro potato plantlets. The metabolomics study has shown that the total glycoalkaloid (TGA) content of greenhouse-grown potato tubers following inoculation with Pseudomonas sp. R41805 did not exceed the acceptable safety limit (200 mg kg-1 FW). As a result of this study, a number of bacteria have been identified with commercial potential that may offer sustainable alternatives in both Andean and European agricultural settings

    Efficacy of Rhizobacteria on plant growth promotion and disease suppression in vitro

    No full text
    This research examines the effect of selected rhizobacteria for pathogen antagonistic and plant growth promotion activities in potato. A total of 22 rhizobacterial isolates collected from potato fields were tested in vitro for antagonism against R. solani and also for their plant growth promotion, indole acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC) deaminase production, phosphate solubilization ability and pathogen suppression activities in potato. Of 22 isolates, 11 were identified as Pseudomonas spp., 10 were identified as Bacillus spp. and one as an Enterobacter sp. All 22 isolates showed antagonistic activity on plate assays against R. solani ranging from 26.9 to 53.4% while the positive controls namely, Bacillus subtilis FZB24® WG and Pseudomonas fluorescens CHAO suppressed the growth of R. solani by 21.3 and 19.8%. Four isolates (18%) positively produced the phytohormone IAA, 17 (77%) had ACC deaminase activity and 19 (86%) solubilized phosphorous. Bacteria were examined for their plant growth promotion and disease suppression effects in in vitro potato after one week bacterization followed by three weeks of pathogen challenge. Over half of the rhizobacterial strains showed a significant effect on plant growth in vitro with a total plant fresh weight ranging from 1.44 to 2.04 g while the control, Bacillus subtilis FZB24® WG and Pseudomonas fluorescens CHAO had a fresh weight of 1.34, 1.62 and 1.51 g, respectively. Disease suppression activity was measured in terms of plant weight which ranged from 1.10 to 1.76 g while the control, Bacillus subtilis FZB24® WG and Pseudomonas fluorescens CHAO had 1.15, 1.33 and 1.29 g, respectively. These preliminary results suggest that the rhizobacteria studied have potential as biocontrol agents

    Expression of apoplast-targeted plant defensin \u3ci\u3eMtDef4.2\u3c/i\u3e confers resistance to leaf rust pathogen \u3ci\u3ePuccinia triticina\u3c/i\u3e but does not affect mycorrhizal symbiosis in transgenic wheat

    Get PDF
    Rust fungi of the order Pucciniales are destructive pathogens of wheat worldwide. Leaf rust caused by the obligate, biotrophic basidiomycete fungus Puccinia triticina (Pt) is an economically important disease capable of causing up to 50 % yield losses. Historically, resistant wheat cultivars have been used to control leaf rust, but genetic resistance is ephemeral and breaks down with the emergence of new virulent Pt races. There is a need to develop alternative measures for control of leaf rust in wheat. Development of transgenic wheat expressing an antifungal defensin offers a promising approach to complement the endogenous resistance genes within the wheat germplasm for durable resistance to Pt. To that end, two different wheat genotypes, Bobwhite and Xin Chun 9 were transformed with a chimeric gene encoding an apoplast-targeted antifungal plant defensin MtDEF4.2 from Medicago truncatula. Transgenic lines from four independent events were further characterized. Homozygous transgenic wheat lines expressing MtDEF4.2 displayed resistance to Pt race MCPSS relative to the non-transgenic controls in growth chamber bioassays. Histopathological analysis suggested the presence of both pre- and posthaustorial resistance to leaf rust in these transgenic lines. MtDEF4.2 did not, however, affect the root colonization of a beneficial arbuscular mycorrhizal fungus Rhizophagus irregularis. This study demonstrates that the expression of apoplast-targeted plant defensin MtDEF4.2 can provide substantial resistance to an economically important leaf rust disease in transgenic wheat without negatively impacting its symbioti

    Biological control agents : from field to market, problems, and challenges

    No full text
    Global food security is vulnerable due to massive growth of the human population, changes in global climate, the emergence of novel/more virulent pathogens, and demands from increasingly discerning consumers for chemical-free, sustainably produced food products. Bacterium-based biological control agents (BCAs), if used as part of an integrated management system, may satisfy the above demands. We focus on the advantages, limitations, problems, and challenges involved in such strategies

    Modes of Action of a Bi-domain Plant Defensin MtDef5 Against a Bacterial Pathogen Xanthomonas campestris

    No full text
    Defensins are small cysteine-rich endogenous host defense peptides expressed in all higher plants. They are thought to be important players in the defense arsenal of plants against fungal and oomycete pathogens. However, little is known regarding the antibacterial activity of these peptides. The genome of the model legume Medicago truncatula contains 63 genes each encoding a defensin with a tetradisulfide array. A unique bi-domain defensin, designated MtDef5, was recently characterized for its potent broad-spectrum antifungal activity. This 107-amino acid defensin contains two domains, 50 amino acids each, linked by a short peptide APKKVEP. Here, we characterize antibacterial activity of this defensin and its two domains, MtDef5A and MtDef5B, against two economically important plant bacterial pathogens, Gram-negative Xanthomonas campestris and Gram-positive Clavibacter michiganensis. MtDef5 inhibits the growth of X. campestris, but not C. michiganensis, at micromolar concentrations. MtDef5B, but not MtDef5A, exhibits more potent antibacterial activity than its parent MtDef5. MtDef5 and each of its two domains induce distinct morphological changes and cell death in X. campestris. They permeabilize the bacterial plasma membrane and translocate across membranes to the cytoplasm. They bind to negatively charged DNA indicating these peptides may kill bacterial cells by inhibiting DNA synthesis and/or transcription. The cationic amino acids present in the two γ-core motifs of MtDef5 that were previously shown to be important for its antifungal activity are also important for its antibacterial activity. MtDef5 and its more potent single domain MtDef5B have the potential to be deployed as antibacterial agents for control of a Xanthomonas wilt disease in transgenic crops
    corecore