398 research outputs found

    Motor Network Degeneration in Amyotrophic Lateral Sclerosis: A Structural and Functional Connectivity Study

    Get PDF
    BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterised by motor neuron degeneration. How this disease affects the central motor network is largely unknown. Here, we combined for the first time structural and functional imaging measures on the motor network in patients with ALS and healthy controls. METHODOLOGY/PRINCIPAL FINDINGS: Structural measures included whole brain cortical thickness and diffusion tensor imaging (DTI) of crucial motor tracts. These structural measures were combined with functional connectivity analysis of the motor network based on resting state fMRI. Focal cortical thinning was observed in the primary motor area in patients with ALS compared to controls and was found to correlate with disease progression. DTI revealed reduced FA values in the corpus callosum and in the rostral part of the corticospinal tract. Overall functional organisation of the motor network was unchanged in patients with ALS compared to healthy controls, however the level of functional connectedness was significantly correlated with disease progression rate. Patients with increased connectedness appear to have a more progressive disease course. CONCLUSIONS/SIGNIFICANCE: We demonstrate structural motor network deterioration in ALS with preserved functional connectivity measures. The positive correlation between functional connectedness of the motor network and disease progression rate could suggest spread of disease along functional connections of the motor network

    Comparative interactomics analysis of different ALS-associated proteins identifies converging molecular pathways

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a devastating neurological disease with no effective treatment available. An increasing number of genetic causes of ALS are being identified, but how these genetic defects lead to motor neuron degeneration and to which extent they affect common cellular pathways remains incompletely understood. To address these questions, we performed an interactomic analysis to identify binding partners of wild-type (WT) and ALS-associated mutant versions of ATXN2, C9orf72, FUS, OPTN, TDP-43 and UBQLN2 in neuronal cells. This analysis identified several known but also many novel binding partners of these proteins

    Weighted gene co-expression network analysis of the peripheral blood from Amyotrophic Lateral Sclerosis patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Amyotrophic Lateral Sclerosis (ALS) is a lethal disorder characterized by progressive degeneration of motor neurons in the brain and spinal cord. Diagnosis is mainly based on clinical symptoms, and there is currently no therapy to stop the disease or slow its progression. Since access to spinal cord tissue is not possible at disease onset, we investigated changes in gene expression profiles in whole blood of ALS patients.</p> <p>Results</p> <p>Our transcriptional study showed dramatic changes in blood of ALS patients; 2,300 probes (9.4%) showed significant differential expression in a discovery dataset consisting of 30 ALS patients and 30 healthy controls. Weighted gene co-expression network analysis (WGCNA) was used to find disease-related networks (modules) and disease related hub genes. Two large co-expression modules were found to be associated with ALS. Our findings were replicated in a second (30 patients and 30 controls) and third dataset (63 patients and 63 controls), thereby demonstrating a highly significant and consistent association of two large co-expression modules with ALS disease status. Ingenuity Pathway Analysis of the ALS related module genes implicates enrichment of functional categories related to genetic disorders, neurodegeneration of the nervous system and inflammatory disease. The ALS related modules contain a number of candidate genes possibly involved in pathogenesis of ALS.</p> <p>Conclusion</p> <p>This first large-scale blood gene expression study in ALS observed distinct patterns between cases and controls which may provide opportunities for biomarker development as well as new insights into the molecular mechanisms of the disease.</p

    Determinants of Life Expectancy and its Prospects under the Role of Economic Misery: A Case of Pakistan

    Get PDF
    The present study investigates the determinants of life expectancy in the presence of economic misery using Pakistan’s time series data over the period of 1972-2012. The stationary properties of the variables are examined by applying unit root test accommodating structural breaks. The ARDL bounds testing approach to cointegration is applied to examine the long run relationship between the variables. Our findings show that cointegration between the variables is confirmed. Moreover, health spending improves life expectancy. Food supply contributes to life expectancy. A rise in economic misery deteriorates life expectancy. Urbanization enhances life expectancy while illiteracy declines it. The causality analysis reveals that life expectancy is Granger cause of health spending, food supply, economic misery, urbanization and illiteracy. This paper opens up new insights for policy making authorities to consider the role of economic misery while formulating comprehensive economic policy to improve life expectancy in Pakistan

    UNC13A in amyotrophic lateral sclerosis: from genetic association to therapeutic target

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with limited treatment options and an incompletely understood pathophysiology. Although genomewide association studies (GWAS) have advanced our understanding of the disease, the precise manner in which risk polymorphisms contribute to disease pathogenesis remains unclear. Of relevance, GWAS have shown that a polymorphism (rs12608932) in the UNC13A gene is associated with risk for both ALS and frontotemporal dementia (FTD). Homozygosity for the C-allele at rs12608932 modifies the ALS phenotype, as these patients are more likely to have bulbar-onset disease, cognitive impairment and FTD at baseline as well as shorter survival. UNC13A is expressed in neuronal tissue and is involved in maintaining synaptic active zones, by enabling the priming and docking of synaptic vesicles. In the absence of functional TDP-43, risk variants in UNC13A lead to the inclusion of a cryptic exon in UNC13A messenger RNA, subsequently leading to nonsense mediated decay, with loss of functional protein. Depletion of UNC13A leads to impaired neurotransmission. Recent discoveries have identified UNC13A as a potential target for therapy development in ALS, with a confirmatory trial with lithium carbonate in UNC13A cases now underway and future approaches with antisense oligonucleotides currently under consideration. Considering UNC13A is a potent phenotypic modifier, it may also impact clinical trial outcomes. This present review describes the path from the initial discovery of UNC13A as a risk gene in ALS to the current therapeutic options being explored and how knowledge of its distinct phenotype needs to be taken into account in future trials
    • …
    corecore