122 research outputs found

    Sodium ion channel mutations in glioblastoma patients correlate with shorter survival

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glioblastoma Multiforme (GBM) is the most common and invasive astrocytic tumor associated with dismal prognosis. Treatment for GBM patients has advanced, but the median survival remains a meager 15 months. In a recent study, 20,000 genes from 21 GBM patients were sequenced that identified frequent mutations in ion channel genes. The goal of this study was to determine whether ion channel mutations have a role in disease progression and whether molecular targeting of ion channels is a promising therapeutic strategy for GBM patients. Therefore, we compared GBM patient survival on the basis of presence or absence of mutations in calcium, potassium and sodium ion transport genes. Cardiac glycosides, known sodium channel inhibitors, were then tested for their ability to inhibit GBM cell proliferation.</p> <p>Results</p> <p>Nearly 90% of patients showed at least one mutation in ion transport genes. GBM patients with mutations in sodium channels showed a significantly shorter survival compared to patients with no sodium channel mutations, whereas a similar comparison based on mutational status of calcium or potassium ion channel mutations showed no survival differences. Experimentally, targeting GBM cells with cardiac glycosides such as digoxin and ouabain demonstrated preferential cytotoxicity against U-87 and D54 GBM cells compared to non-tumor astrocytes (NTAs).</p> <p>Conclusions</p> <p>These pilot studies of GBM patients with sodium channel mutations indicate an association with a more aggressive disease and significantly shorter survival. Moreover, inhibition of GBM cells by ion channel inhibitors such as cardiac glycosides suggest a therapeutic strategy with relatively safe drugs for targeting GBM ion channel mutations. <b>Key Words: </b>glioblastoma multiforme, ion channels, mutations, small molecule inhibitors, cardiac glycosides.</p

    Patient-oriented gene set analysis for cancer mutation data

    Get PDF
    Recent research has revealed complex heterogeneous genomic landscapes in human cancers. However, mutations tend to occur within a core group of pathways and biological processes that can be grouped into gene sets. To better understand the significance of these pathways, we have developed an approach that initially scores each gene set at the patient rather than the gene level. In mutation analysis, these patient-oriented methods are more transparent, interpretable, and statistically powerful than traditional gene-oriented methods

    Genetic progression and the waiting time to cancer

    Get PDF
    Cancer results from genetic alterations that disturb the normal cooperative behavior of cells. Recent high-throughput genomic studies of cancer cells have shown that the mutational landscape of cancer is complex and that individual cancers may evolve through mutations in as many as 20 different cancer-associated genes. We use data published by Sjoblom et al. (2006) to develop a new mathematical model for the somatic evolution of colorectal cancers. We employ the Wright-Fisher process for exploring the basic parameters of this evolutionary process and derive an analytical approximation for the expected waiting time to the cancer phenotype. Our results highlight the relative importance of selection over both the size of the cell population at risk and the mutation rate. The model predicts that the observed genetic diversity of cancer genomes can arise under a normal mutation rate if the average selective advantage per mutation is on the order of 1%. Increased mutation rates due to genetic instability would allow even smaller selective advantages during tumorigenesis. The complexity of cancer progression thus can be understood as the result of multiple sequential mutations, each of which has a relatively small but positive effect on net cell growth.Comment: Details available as supplementary material at http://www.people.fas.harvard.edu/~antal/publications.htm

    Mutant PIK3CA promotes cell growth and invasion of human cancer cells

    Get PDF
    SummaryPIK3CA is mutated in diverse human cancers, but the functional effects of these mutations have not been defined. To evaluate the consequences of PIK3CA alterations, the two most common mutations were inactivated by gene targeting in colorectal cancer (CRC) cells. Biochemical analyses of these cells showed that mutant PIK3CA selectively regulated the phosphorylation of AKT and the forkhead transcription factors FKHR and FKHRL1. PIK3CA mutations had little effect on growth under standard conditions, but reduced cellular dependence on growth factors. PIK3CA mutations resulted in attenuation of apoptosis and facilitated tumor invasion. Treatment with the PI3K inhibitor LY294002 abrogated PIK3CA signaling and preferentially inhibited growth of PIK3CA mutant cells. These data have important implications for therapy of cancers harboring PIK3CA alterations

    Somatic mutations in the chromatin remodeling gene ARID1A occur in several tumor types

    Get PDF
    Mutations in the chromatin remodeling gene ARID1A have recently been identified in the majority of ovarian clear cell carcinomas (OCCCs). To determine the prevalence of mutations in other tumor types, we evaluated 759 malignant neoplasms including those of the pancreas, breast, colon, stomach, lung, prostate, brain, and blood (leukemias). We identified truncating mutations in 6% of the neoplasms studied; nontruncating somatic mutations were identified in an additional 0.4% of neoplasms. Mutations were most commonly found in gastrointestinal samples with 12 of 119 (10%) colorectal and 10 of 100 (10%) gastric neoplasms, respectively, harboring changes. More than half of the mutated colorectal and gastric cancers displayed microsatellite instability (MSI) and the mutations in these tumors were out‐of‐frame insertions or deletions at mononucleotide repeats. Mutations were also identified in 2–8% of tumors of the pancreas, breast, brain (medulloblastomas), prostate, and lung, and none of these tumors displayed MSI. These findings suggest that the aberrant chromatin remodeling consequent to ARID1A inactivation contributes to a variety of different types of neoplasms. Hum Mutat 33:100–103, 2012. © 2011 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/89516/1/humu_21633_sm_Mat.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/89516/2/21633_ftp.pd

    Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia.

    Get PDF
    The SH2 domain-containing protein-tyrosine phosphatase PTPN11 (Shp2) is required for normal development and is an essential component of signaling pathways initiated by growth factors, cytokines, and extracellular matrix. In many of these pathways, Shp2 acts upstream of Ras. About 50% of patients with Noonan syndrome have germ-line PTPN11 gain of function mutations. Associations between Noonan syndrome and an increased risk of some malignancies, notably leukemia and neuroblastoma, have been reported, and recent data indicate that somatic PTPN11 mutations occur in children with sporadic juvenile myelomonocytic leukemia, myelodysplasic syndrome, B-cell acute lymphoblastic leukemia, and acute myelogenous leukemia (AML). Juvenile myelomonocytic leukemia patients without PTPN11 mutations have either homozygotic NF-1 deletion or activating RAS mutations. Given the role of Shp2 in Ras activation and the frequent mutation of RAS in human tumors, these data raise the possibility that PTPN11 mutations play a broader role in cancer. We asked whether PTPN11 mutations occur in other malignancies in which activating RAS mutations occur at low but significant frequency. Sequencing of PTPN11 from 13 different human neoplasms including breast, lung, gastric, and neuroblastoma tumors and adult AML and acute lymphoblastic leukemia revealed 11 missense mutations. Five are known mutations predicted to result in an activated form of Shp2, whereas six are new mutations. Biochemical analysis confirmed that several of the new mutations result in increased Shp2 activity. Our data demonstrate that mutations in PTPN11 occur at low frequency in several human cancers, especially neuroblastoma and AML, and suggest that Shp2 may be a novel target for antineoplastic therapy

    Identification of microbial DNA in human cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microorganisms have been associated with many types of human diseases; however, a significant number of clinically important microbial pathogens remain to be discovered.</p> <p>Methods</p> <p>We have developed a genome-wide approach, called Digital Karyotyping Microbe Identification (DK-MICROBE), to identify genomic DNA of bacteria and viruses in human disease tissues. This method involves the generation of an experimental DNA tag library through Digital Karyotyping (DK) followed by analysis of the tag sequences for the presence of microbial DNA content using a compiled microbial DNA virtual tag library.</p> <p>Results</p> <p>To validate this technology and to identify pathogens that may be associated with human cancer pathogenesis, we used DK-MICROBE to determine the presence of microbial DNA in 58 human tumor samples, including brain, ovarian, and colorectal cancers. We detected DNA from Human herpesvirus 6 (HHV-6) in a DK library of a colorectal cancer liver metastasis and in normal tissue from the same patient.</p> <p>Conclusion</p> <p>DK-MICROBE can identify previously unknown infectious agents in human tumors, and is now available for further applications for the identification of pathogen DNA in human cancer and other diseases.</p

    Beyond genomics: Critical evaluation of cell line utility for ovarian cancer research

    Full text link
    OBJECTIVE: Comparisons of The Cancer Genome Atlas (TCGA) with high grade serous ovarian cancer (HGSOC) cell lines used in research reveal that many common experimental models lack defining genomic characteristics seen in patient tumors. As cell lines exist with higher genomic fidelity to TCGA, this study aimed to evaluate the utility of these cell lines as tools for preclinical investigation. METHODS: We compared two HGSOC cell lines with supposed high genomic fidelity to TCGA, KURAMOCHI and OVSAHO, with the most commonly cited ovarian cancer cell line, SKOV3, which has poor genomic fidelity to TCGA. The lines were analyzed for genomic alterations, in vitro performance, and growth in murine xenografts. RESULTS: Using targeted next generation sequencing analyses, we determined that each line had a distinct mutation profile, including alterations in TP53, and copy number variation of specific genes. KURAMOCHI and OVSAHO better recapitulated serous carcinoma morphology than SKOV3. All lines expressed PAX8 and stathmin, but KURAMOCHI and OVSAHO did not express CK7. KURAMOCHI was significantly more platinum sensitive than OVSAHO and SKOV3. Unlike SKOV3, KURAMOCHI and OVSAHO engrafted poorly in subcutaneous xenografts. KURAMOCHI and OVSAHO grew best after intraperitoneal injection in SCID mice and recapitulated miliary disease while SKOV3 grew in all murine systems and formed oligometastatic disease. CONCLUSIONS: The research utility of HGSOC cell line models requires a comprehensive assessment of genomic as well as in vitro and in vivo properties. Cell lines with closer genomic fidelity to human tumors may have limitations in performance for preclinical investigation

    Genome-wide linkage scan for colorectal cancer susceptibility genes supports linkage to chromosome 3q

    Get PDF
    Background: Colorectal cancer is one of the most common causes of cancer-related mortality. The disease is clinically and genetically heterogeneous though a strong hereditary component has been identified. However, only a small proportion of the inherited susceptibility can be ascribed to dominant syndromes, such as Hereditary Non-Polyposis Colorectal Cancer (HNPCC) or Familial Adenomatous Polyposis (FAP). In an attempt to identify novel colorectal cancer predisposing genes, we have performed a genome-wide linkage analysis in 30 Swedish non-FAP/non-HNPCC families with a strong family history of colorectal cancer.Methods: Statistical analysis was performed using multipoint parametric and nonparametric linkage.Results: Parametric analysis under the assumption of locus homogeneity excluded any common susceptibility regions harbouring a predisposing gene for colorectal cancer. However, several loci on chromosomes 2q, 3q, 6q, and 7q with suggestive linkage were detected in the parametric analysis under the assumption of locus heterogeneity as well as in the nonparametric analysis. Among these loci, the locus on chromosome 3q21.1- q26.2 was the most consistent finding providing positive results in both parametric and nonparametric analyses Heterogeneity LOD score (HLOD) = 1.90, alpha = 0.45, Non-Parametric LOD score (NPL) = 2.1).Conclusion: The strongest evidence of linkage was seen for the region on chromosome 3. Interestingly, the same region has recently been reported as the most significant finding in a genome-wide analysis performed with SNP arrays; thus our results independently support the finding on chromosome 3q
    corecore