182 research outputs found

    Vortex-hole duality: a unified picture of weak and strong-coupling regimes of bosonic ladders with flux

    Get PDF
    Two-leg bosonic ladders with flux harbor a remarkable vortex-hole duality between the weak-coupling vortex lattice superfluids and strong-coupling charge-density-wave crystals. The strong-coupling crystalline states, which are realized in the vicinity of π\pi-flux, are independent of particle statistics, and are related with the incompressible fractional quantum Hall states in the thin-cylinder limit. These fully gapped ground states, away of π\pi-flux, develop nonzero chiral (spin) currents. Contact-interacting quantum gases permit exploration of this vortex-hole duality in experiments.Comment: 11 pages, 15 figure

    Topological quasi-one-dimensional state of interacting spinless electrons

    Get PDF
    By decreasing the transversal confinement potential in interacting one-dimensional spinless electrons and populating the second energetically lowest sub-band, for not too strong interactions system transitions into a quasi-one-dimensional state with dominant superconducting correlations and one gapless mode. By combining effective field theory approach and numerical density matrix renormalization group simulations we show that this quasi-one-dimensional state is a topological state that hosts zero-energy edge modes. We also study the single-particle correlations across the interface between this quasi-one-dimensional and single-channel states.Comment: 8 pages, 10 figure

    Magnetic field induced band insulator to Mott insulator transformations in 4-component alkali fermions at half-filling

    Get PDF
    Under the influence of an external magnetic field and spin-changing collisions, the band insulator (BI) state of one-dimensional (1D) s-wave repulsively interacting 4-component fermions at half-filling transforms into Mott insulator (MI) states with spontaneously broken translational symmetry: a dimerized state for shallow lattices and a N{\'e}el state for deep lattices via an intermediate topological state. Since a BI has vanishing entropy per particle, these MI phases could be particularly inviting for experimental realization under the similar conditions as those for 40^{40}K atoms [1], provided the magnetic field is changed adiabatically.Comment: 5 eps figure

    Current fidelity susceptibility and conductivity in one-dimensional lattice models with open and periodic boundary conditions

    Get PDF
    We study, both numerically and analytically, the finite size scaling of the fidelity susceptibility \chi_{J} with respect to the charge or spin current in one-dimensional lattice models, and relate it to the low-frequency behavior of the corresponding conductivity. It is shown that in gapless systems with open boundary conditions the leading dependence on the system size L stems from the singular part of the conductivity and is quadratic, with a universal form \chi_{J}= 7KL^2 \zeta(3)/2\pi^4 where K is the Luttinger liquid parameter. In contrast to that, for periodic boundary conditions the leading system size dependence is directly connected with the regular part of the conductivity (giving alternative possibility to study low frequency behavior of the regular part of conductivity) and is subquadratic, \chi_{J} \propto L^\gamma(K), (with a K dependent constant \gamma) in most situations linear, \gamma=1. For open boundary conditions, we also study another current-related quantity, the fidelity susceptibility to the lattice tilt \chi_{P} and show that it scales as the quartic power of the system size, \chi_{P}=31KL^4 \zeta(5)/8 u^2 \pi^6, where u is the sound velocity. We comment on the behavior of the current fidelity susceptibility in gapped phases, particularly in the topologically ordered Haldane state.Comment: 11 pages, 7 eps figure

    Magnetic phases of spin-3/2 fermions on a spatially anisotropic square lattice

    Full text link
    We study the magnetic phase diagram of spin-3/2 fermions in a spatially anisotropic square optical lattice at quarter filling (corresponding to one particle per lattice site). In the limit of the large on-site repulsion the system can be mapped to the so-called Sp(N) Heisenberg spin model with N=4. We analyze the Sp(N) spin model with the help of the large-N field-theoretical approach and show that the effective theory corresponds to the Sp(N) extension of the CP^{N-1} model, with the Lorentz invariance generically broken. We obtain the renormalization flow of the model couplings and show that although the Sp(N) terms are seemingly irrelevant, their presence leads to a renormalization of the CP^{N-1} part of the action, driving a phase transition. We further consider the influence of the external magnetic field (the quadratic Zeeman effect), and present the qualitative analysis of the ground state phase diagram.Comment: 10 Revtex pages, 5 figures; (v2) corrected the last paragraph in Appendix B and some typos; (v3) added references, extended discussion of the phase diagra

    Ground-state phases of rung-alternated spin-1/2 Heisenberg ladder

    Full text link
    The ground-state phase diagram of Heisenberg spin-1/2 system on a two-leg ladder with rung alternation is studied by combining analytical approaches with numerical simulations. For the case of ferromagnetic leg exchanges a unique ferrimagnetic ground state emerges, whereas for the case of antiferromagnetic leg exchanges several different ground states are stabilized depending on the ratio between exchanges along legs and rungs. For the more general case of a honeycomb-ladder model for the case of ferromagnetic leg exchanges besides usual rung-singlet and saturated ferromagnetic states we obtain a ferrimagnetic Luttinger liquid phase with both linear and quadratic low energy dispersions and ground state magnetization continuously changing with system parameters. For the case of antiferromagnetic exchanges along legs, different dimerized states including states with additional topological order are suggested to be realized

    Ultra-cold bosons in zig-zag optical lattices

    Get PDF
    Ultra-cold bosons in zig-zag optical lattices present a rich physics due to the interplay between frustration, induced by lattice geometry, two-body interaction and three-body constraint. Unconstrained bosons may develop chiral superfluidity and a Mott-insulator even at vanishingly small interactions. Bosons with a three-body constraint allow for a Haldane-insulator phase in non-polar gases, as well as pair-superfluidity and density wave phases for attractive interactions. These phases may be created and detected within the current state of the art techniques.Comment: 8 pages, 9 figure
    • …
    corecore