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Fidelity susceptibility and conductivity of the current in one-dimensional lattice models
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We study, both numerically and analytically, the finite-size scaling of the fidelity susceptibility χJ with respect
to the charge or spin current in one-dimensional lattice models and relate it to the low-frequency behavior of
the corresponding conductivity. It is shown that in gapless systems with open boundary conditions the leading
dependence on the system size L stems from the singular part of the conductivity and is quadratic, with a universal
form χJ = [7ζ (3)/2π 4]KL2, where K is the Luttinger liquid parameter and ζ (x) is the Riemann ζ function. In
contrast to that for periodic boundary conditions the leading system size dependence is directly connected to the
regular part of the conductivity and is subquadratic, χJ ∝ Lγ , where the K-dependent exponent γ is equal to 1
in most situations (as a side effect, this relation provides an alternative way to study the low-frequency behavior
of the regular part of the conductivity). For open boundary conditions, we also study another current-related
quantity, the fidelity susceptibility to the lattice tilt χP , and show that it scales as the quartic power of the system
size, χP = [31ζ (5)/8π 6](KL4/u2), where u is the sound velocity. Thus, the ratio L2χJ /χP directly measures the
sound velocity in open chains. The behavior of the current fidelity susceptibility in gapped phases is discussed,
particularly in the topologically ordered Haldane state.
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I. INTRODUCTION

The ground-state fidelity susceptibility (FS) has established
itself as a useful computational tool for locating quantum
phase transitions in many-body systems.1–4 For a general
Hamiltonian,

Ĥ(λ) = Ĥ0 + λŴ , (1)

with a phase transition driven by the coupling to a certain oper-
ator Ŵ , the fidelity5 F (λ,δλ) = 〈ψ0(λ)|ψ0(λ + δλ)〉 measures
the change in the ground-state wave function |ψ0(λ)〉 with
the infinitesimal change of the coupling λ, and the fidelity
susceptibility χW with respect to the “perturbation” W is
defined as1,2

χW (λ) = lim
δλ→0

1 − |F (λ,δλ)|2
δλ2

=
∑
n�=0

|〈ψ0(λ)|Ŵ |ψn(λ)〉|2
[En(λ) − E0(λ)]2

, (2)

where the last line is obtained in the second order of
perturbation theory1,2 assuming that the ground state is unique.
Summation in (2) is over all eigenstates |ψn(λ)〉 of the
Hamiltonian H(λ) with the eigenvalues En(λ), except the
ground state |ψ0(λ)〉.

Typically, in the thermodynamic limit, i.e., for system
size L → ∞, the FS would become an extensive quantity
that diverges at point λc, corresponding to a quantum phase
transition, χW ∝ L/(λ − λc)α , while for systems of finite size
the analysis of the scaling behavior of

χW (λc) ∝ Lμ (3)

allows one to extract the critical exponent ν of the correlation
length, ν = (μ − 1)/α, and thus to determine the universality
class of the transition.

One of the most advanced unbiased numerical methods for
analyzing lattice models in reduced spatial dimensions is the
density matrix renormalization group6,7 (DMRG), which is
best suited for systems with open boundary conditions along
at least one of the spatial directions. In one dimension (1D),
systems with open boundaries consisting of L ∼ 102–103 sites
can be efficiently analyzed by DMRG. Hence, it is crucial
to understand the dependence of the FS on the boundary
conditions. For many types of the perturbation W , the FS
depends only weakly on the boundary conditions for large
systems.

In the present paper, we show that if Ŵ is charge- or spin-
current operator Ĵ or the “polarization” operator P̂ (which
physically corresponds to introducing the external electric field
for charged particles or to tilting the lattice for neutral particles
or to a magnetic field gradient for spins), the situation is very
special. We study the current FS in several model systems,
including spin chains, the Hubbard model for spinful fermions,
and the Bose-Hubbard model. It is shown that in gapless 1D
systems with open boundary conditions (o.b.c.) the leading
terms in the L dependence are given by χJ ∝ KL2 and χP ∝
KL4/u2, where K is the Luttinger liquid parameter, u is the
characteristic “sound” velocity, and the numerical prefactors
are universal. We show, by means of relating χJ and χP to
the behavior of the positive frequency conductivity σ1(ω), that
those superextensive terms in the FS originate from the low-
frequency behavior of the singular part of the conductivity.
Since those terms are universal, they can mask the diverging
part of the FS at a phase-transition point between two gapless
regions.

In contrast, for gapless systems with periodic boundary
conditions (p.b.c.) the leading system size dependence of the
current FS is linear, χJ ∝ L, in a wide range of the Luttinger
liquid parameter K , and may change to a subquadratic
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one, χJ ∝ Lγ with γ depending on K , 1 � γ < 2. At
the Kosterlitz-Thouless (KT) metal-insulator transition point
χJ ∝ (L/ ln L)2.

As a by-product of this study, we establish the general
properties of the low-frequency behavior of the conductivity
in systems with open and periodic boundary conditions. We
emphasize a crucial difference in the behavior of the conduc-
tivity in systems with p.b.c. and o.b.c., which is responsible
for the peculiar difference in the current FS properties.

We also show that in gapped phases the current FS is
generically extensive, independent of boundary conditions,
χJ ∝ L, but it may again acquire the quadratic system size
dependence for topologically ordered states in systems with
open boundary conditions, for example, in the singlet ground
state of the open Haldane chain, due to nonlocally entangled
edge spins.

The structure of the paper is as follows: in Sec. II we
consider the main properties of the current fidelity suscep-
tibility, its relation to the conductivity, and the dependence on
boundary conditions for the simplest example of the spin- 1

2
XXZ chain in its gapless phase (which is equivalent to
nearest-neighbor interacting spinless fermions). We present
two ways of calculating the current FS for open systems: one
is based on the free-fermion picture and involves bosonization
arguments for a generalization to the interacting case, and the
other way is based on applying a unitary twist transformation
and reducing the problem to calculating certain integrals of
the (spin) density correlation function. We also present an
example of how the presence of universal quadratic terms in
the current FS can hinder the detection of phase transitions
between two gapless phases of the 1D Bose-Hubbard model.
In Sec. III we consider the properties of the current FS in the
fermionic Hubbard model. Section IV discusses the behavior
of the current FS in gapped phases, and Sec. V contains a
brief summary. In the Appendix we provide details of the
bosonization calculations used throughout the paper for open
chains.

II. SPIN-CURRENT FIDELITY SUSCEPTIBILITY AND
CONDUCTIVITY OF THE SPIN- 1

2 X X Z CHAIN

We start by considering a spin- 1
2 XXZ chain with the

additional Dzyaloshinskii-Moriya (DM) coupling, described
by the Hamiltonian

Ĥ = ĤXXZ + ĤDM, (4)

with

ĤXXZ = J
∑

l

(
Sx

l Sx
l+1 + S

y

l S
y

l+1 + Sz
l S

z
l+1

)
,

ĤDM = dĴ , Ĵ =
∑

l

Jl =
∑

l

(	Sl × 	Sl+1)z, (5)

where Sα
l are spin- 1

2 operators acting at site l of the chain.
In what follows, we set the Planck constant h̄ and the lattice
spacing a to unity and measure energy in units of J = 1.

We will study the current fidelity susceptibility (CFS)
χJ (d) that describes the response of the ground state to an
infinitesimal change of the DM coupling d. In the following,
we study separately the cases of open and periodic boundary

conditions. We will use the upper indices o and p to distinguish
the FS for those two cases.

Consider first the CFS at d = 0 (the alternative derivation,
valid for finite d and for arbitrary half-integer spin S, is
presented later in Sec. II D). At d = 0, the quantity Ĵ has
the meaning of the total spin current because the local currents
Jl satisfy the continuity equation ∂tS

z
l = Jl − Jl+1.

It is worthwhile to note that the CFS is identical to the
so-called stiffness FS8 χρ [defined in Eq. (7)], which describes
the response of the ground state to a uniform infinitesimal twist
ϕ on every link:

Ĥ 
→ Ĥ (ϕ) =
∑

j

[(
1

2
S+

j S−
j+1e

iϕ + H.c.

)
+ Sz

jS
z
j+1

]
, (6)

χρ = lim
ϕ→0

1 − |〈ψ0(0)|ψ0(ϕ)〉|2
ϕ2

. (7)

The second derivative of the ground-state energy with
respect to ϕ defines the spin stiffness ρ; exact results for ρ

are available for the spin- 1
2 XXZ chain9 as well as for the

Hubbard model.9,10

Note that, even though χJ = χρ , the second derivatives
of the ground-state energy with respect to d and ϕ differ.
Following the results of Ref. 9, the second derivative with
respect to the twist

∂2E0

∂ϕ2

∣∣∣∣
ϕ=0

= 〈−Tk〉 − 2
∑
n�=0

|〈ψ0|Ĵ |ψn〉|2
En − E0

= 2Lρ (8)

gives the spin stiffness ρ, as already mentioned, where Tk =∑
j [ 1

2S+
j S−

j+1 + H.c.] is the kinetic energy. On the other hand,
a similar perturbative calculation3 for the second derivative
with respect to the DM coupling yields

∂2E0

∂d2

∣∣∣∣
d=0

= −2
∑
n�=0

|〈ψ0|Ĵ |ψn〉|2
En − E0

. (9)

In particular, for p.b.c. for  = 0, ∂2E0/∂d2 = 0 as current
commutes with kinetic energy in periodic chains and thus
current operator and kinetic energy share common eigenstates;
however, spin stiffness is nonzero, and ρ = 1/π for the free
case.

For the systems with o.b.c. the uniform twist can be
completely absorbed by unitary transformation for any , and
thus

∂2E0

∂ϕ2

∣∣∣∣
ϕ=0

= 0. (10)

Alternatively, Eq. (10) for open chains follows from the f -sum
rule [see (18) below]; the same sum rule implies, for the other
derivative,

∂2E0

∂d2

∣∣∣∣
d=0

= −2
∑
n�=0

|〈ψ0|Ĵ |ψn〉|2
En − E0

= 〈Tk〉, (11)

and it does not vanish even for  = 0 (〈Tk〉 = −L/π for the
free case) as current does not commute with kinetic energy
for o.b.c.

It is also worth remarking that if one performs a twist by
Lϕ � 1 on only one link of a periodic chain (twisting the
boundary conditions), the energies will be the same as for the
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uniform twist by the angle ϕ on every link (since these two
cases are related by canonical transformation), but the FS with
respect to the twist on one link will be different8 from χρ of
Eq. (6). The reason is that twisting the single link (twisting
the boundary condition) breaks translational symmetry and
thus makes the situation similar to that in the o.b.c. case. As
a result, the response of the ground-state wave function to the
infinitesimal twist on a single link is nonzero independent of
boundary conditions, even in the noninteracting case ( = 0).

Instead of the spin- 1
2 XXZ chain with the DM coupling,

described by the Hamiltonian (4), one may have in mind
interacting lattice fermions or hard-core bosons under the
action of some “field” d that couples to the total particle
current,

Ĥ = −1

2

∑
j

[c†j cj+1 + c
†
j+1cj ] + 

∑
j

njnj+1

− i
d

2

∑
j

[c†j cj+1 − c
†
j+1cj ], (12)

which is equivalent to the spin- 1
2 XXZ chain by the well-

known Jordan-Wigner transformation. At d = 0 CFS χJ

defines the response of the ground state of such a system
to the infinitesimal uniform change of current through nearest-
neighbor links.

A. Relation between the CFS and conductivity

According to (2), the CFS can be written as

χJ (d = 0) =
∑
n�=0

|〈ψ0|Ĵ |ψn〉|2
(En − E0)2

, (13)

where En are the eigenvalues of ĤXXZ and the summation is
over all excited states. Comparing the above expression to the
definition of the positive-frequency real part of the spin-current
conductivity,11

σ1(ω) ≡ Re σ (ω)|ω>0

= π

Lω

∑
n�=0

|〈ψ0|Ĵ |ψn〉|2δ[ω − (En − E0)], (14)

one obtains the following relation between the CFS and the
integrated conductivity:

χJ = L

π

∫ ∞

0
dω

σ1(ω)

ω
. (15)

It is important that for p.b.c. systems definition (14) does not
include the Drude weight term Kuδ(ω). The Drude weight is
concentrated at ω = 0, while the sum in Eq. (14) is over the
energy eigenstates with the lower bound En − E0 ∼ 1/L > 0,
so it does not account for the zero mode.9

In contrast, in systems with o.b.c. the total current does
not commute with the Hamiltonian even in the noninteracting
case ( = 0). Its zero mode vanishes identically [see Eq. (A3)
in the Appendix]; hence the singular part of the conductivity
(the Drude weight term) is included in σ1(ω). As we will see
below, it is due to this reason that the finite-size scaling of χJ

is quite different for systems with periodic and open boundary
conditions.

B. Periodic boundary conditions

For a periodic chain

σ
p

1 (ω) = σreg(ω), (16)

where σreg(ω) is a regular part of the conductivity; as mentioned
above, the total real part of the conductivity (including zero
mode) is

Re σp(ω) = Kuδ(ω) + σreg(ω), (17)

where u = K
2K−1 sin π

2K
has the meaning of the spin-wave

velocity of the XXZ chain. The total conductivity satisfies
the f -sum rule9,12–14

1

π

∫ ∞

0
σ (ω) dω = − 1

2L
〈Tk〉, (18)

where 〈Tk〉 is the average kinetic energy, which in the case of
the XXZ chain can be evaluated as

〈Tk〉 = E0() − ∂E0() (19)

from the exact dependence of the ground-state energy on .15

One can observe that for the XXZ chain with
−1 <  � 1/4 the product Ku is well approximated by

Ku  π〈−Tk〉/L, (20)

so the right-hand side of (18) is (in a rather wide region,
−1 <  � 1/4) well approximated by Ku/(2π ), and thus, in
this region the sum rule (18) is exhausted to a high accuracy
by the Drude term [using

∫ ∞
0 δ(x)dx = 1/2].

For weak interaction , a perturbative calculation17 yields
σreg(ω) ∼ 2ω8K−5. Then for K > 5/8 (which corresponds

to  < 1+√
5

4  0.8 and, strictly speaking, is outside the
perturbative regime in ) the integral in (15) is O(1), so the
CFS has a usual extensive dependence on the system size,

χ
p

J ∝ L + · · · , K > 5
8 , (21)

where the dots (here and throughout the paper) stand for
subleading contributions in the system size. The situation
is different for periodic chains with 1/2 � K � 5/8, where
relation (15) suggests the following nontrivial dependence on
the system size:

χ
p

J ∝ L(ln L + const) at K = 5/8 (22)

and

χ
p

J ∝ L6−8K + · · · , 1
2 < K < 5

8 . (23)

The KT phase-transition point  = 1, where K = 1/2,
must be treated separately since at this point the conductiv-
ity gets logarithmic corrections,11 σreg(ω) ∼ 1/ω ln2(ω), and
hence

χ
p

J ∝ L

[
li(AL)

A
− L

ln(AL)
+ const

]
+ · · · (24)

∼ (L/ln L)2 + · · · at  = 1,

with some numerical coefficient A and li(x) being the logarith-
mic integral function. Equations (22)–(24) can be obtained by
replacing the lower integration limit in Eq. (15) by a quantity
of the order of u/L.
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FIG. 1. (Color online) Exact results for − π

L
〈Tk〉 (solid line) vs Ku

(dashed line) in the spin- 1
2 XXZ chain as a function of the anisotropy

 obtained from the Bethe ansatz solution in the thermodynamic
limit. The deviation at 1/4 �  shows that in this region the regular
part of the conductivity has to contribute noticeably to the sum
rule (18). The Drude weight (the coefficient in front of the δ function
describing the ballistic transport) is related to the spin stiffness as
Ku = πρ.9,10,16

It should be remarked that our results [Eqs. (21)–(24)]
disagree with the analytical estimates presented in Ref. 8 for
the stiffness FS χρ that is equal to our current FS χJ , as already
mentioned. Namely, Eq. (20) of Ref. 8 creates the impression
that the leading contribution to χρ scales generically as L2 in
periodic systems. This, in light of the intimate connection
between the CFS and the regular part of the conductivity
established by us above, would require σreg(ω) ∼ 1/ω at low
frequencies, contradicting the f -sum rule for the conductivity.
In addition the K-dependent contribution presented in Eq. (20)
of Ref. 8 also disagrees with our K-dependent contribution
given in Eqs. (22)–(24).

Figure 2 shows the DMRG results for χ
p

J in periodic
XXZ chains with different values of the interaction . For
 � 0.5, a good convergence to the linear scaling χ

p

J /L ∝
const + O(1/L) is achieved. However, for 0.8 >  > 0.5 we
cannot confirm reliably convergence of χ

p

J /L to a constant
for the system sizes studied, L < 100. At  = 0.8 (K = 5/8)
we fitted well our numerical data according to Eq. (22). In
the region 0.8 <  < 1 our fits reproduce nicely the leading

0 50 100L

10

10

10

−3

−4

−2

χ J /
 L

 = −0.4

 = −0.8

 = 0.4
 = 0.6

 = 0.8

 = 0.9

Δ

Δ
Δ

Δ
Δ

Δ

Δ

 = 1.0

FIG. 2. (Color online) The finite-size scaling of the current FS
χJ in the spin- 1

2 XXZ chain with p.b.c. for different values of the
anisotropy . In DMRG simulations, we have chosen the step δd =
10−3 and have kept about m ∼ 1000 states to achieve good accuracy.
For small system sizes L � 26 our DMRG data reproduced Lanczos
results presented in Figs. 1 and 2 of Ref. 8 (note that there is a misprint
on the vertical axis labeling of Fig. 2 in Ref. 8).

20 40 60 80
L

0.001

0.01

χ J / 
L

Δ = 0.8

Δ = 0.9

Δ = 1.0 Δ = 0.94

FIG. 3. (Color online) Fits of the numerical data shown in Fig. 2
(circles) for  � 0.8 according to Eqs. (22)–(24). At  = 0.8 the data
are fitted to Eq. (22), 103χ

p

J /L = 1.57 ln L − 2.33. At  = 0.9 and
 = 0.94 the data are fitted to Eq. (23) with subleading corrections:
 = 0.9, 103χ

p

J /L = 2.46L0.33 + 0.84 ln L − 5.55 and  = 0.94,
103χ

p

J /L = 1.17
√

L + 1.11 ln L − 4.44. Finally, at  = 1 the data
are fitted to Eq. (24), 103χ

p

J /L = 4.91[li(4L)/4 − L/ ln(4L)] −
3.86. Numerical error is estimated to be smaller than the circle size.

nontrivial system size dependence in Eq. (23) when including
the subleading corrections of the form of Eq. (22). Finally, at
 = 1 a good fit of χ

p

J by Eq. (24) with A  4 is observed.
We present our fits for 0.8 �  � 1 in Fig. 3.

At  = 1 it is worthwhile to mention the effect of the
next-nearest-neighbor antiferromagnetic coupling J2 (which
is also assumed to be SU (2) symmetric),

Ĥ =
∑

j

(	Sj
	Sj+1 + J2 	Sj

	Sj+2). (25)

One can observe that due to J2 coupling, the expression of
current operator changes as follows:

Ĵ → i

2

∑
j

(S+
j S−

j+1 + J2S
+
j S−

j+2) + H.c. (26)

At the special point J2 = J c
2  0.241 (that in the thermo-

dynamic limit corresponds to the phase transition between
the Luttinger liquid and dimerized phases) the amplitude of
the basic (marginal) umklapp term vanishes in the effective
bosonization formulation. For that reason, the low-frequency
behavior of the regular part of the conductivity changes to
σ1(ω) ∼ ω8nK−5, where K = 1/2 due to SU (2) symmetry
and n > 1 is some integer, so that in any case the integral∫ ∞

0 [σ1(ω)/ω] dω converges at ω = 0. Hence at J2 = J c
2 the

CFS χ
p

J ∼ L, even though this is a phase-transition point
between a gapless and a gapped region. This agrees well with
the data shown in Fig. 4 of Ref. 8; namely, the ratio χ

p

J /L

becomes nearly system size independent at J2 = J c
2 . The form

of the current operator (26) explains why the infinitesimal
twist in Ref. 8 has to be the same in both nearest-neighbor and
next-nearest-neighbor links to observe the flat curve χ

p

J /L vs
L at J2 = J c

2 .
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F
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m

FIG. 4. (Color online) An example of the particle-hole excitation
with excitation energy 3πu/L. As one can see, there are exactly
ρ(3) = 3 different particle-hole excitations (involving the creation of
a single particle-hole pair) with that energy. A similar picture holds
for any energy Em − E0 = πum/L; hence, ρ(m) = m.

C. Open boundary conditions

Let us start our discussion of the CFS for open chains
from the noninteracting case  = 0 (free spinless fermions or
hardcore bosons). At low excitation energies, the spectrum is
approximately linear, Em − E0  uπm/L. Expression (14),
which for o.b.c. represents the entire conductivity, can be
rewritten as

σo
1 = π

ωL

∑
m>0

ρ(m)|〈ψ0|Ĵ |ψm〉|2δ[ω − (Em − E0)], (27)

where the matrix element of the current (see the Appendix) is

|〈ψ0|Ĵ |ψm〉| = [1 − (−1)m]u

mπ
, (28)

where, according to our conventions for free fermions,
u( = 0) = 1 and the degeneracy

ρ(m) = m (29)

is the number of different particle-hole excitations with the
same energy Em as is illustrated in Fig. 4 (excited states with
more than one particle-hole pair do not contribute since they
cannot be created by the current operator from the ground
state). Note that the matrix element satisfies the parity selection
rule and is nonzero only for odd m = 2k + 1.

Putting everything together, we obtain the following low-
frequency behavior for the conductivity of free fermions (the
XY model,  = 0) in an open chain:

σo
1 = πu2

Lω

∞∑
k=0

4(2k + 1)

(2k + 1)2π2
δ[ω − (E2k+1 − E0)]

=
∞∑

k=0

4u

(2k + 1)2π2
δ

(
ω − (2k + 1)uπ

L

)
. (30)

Note that this low-frequency behavior is singular, Lσo
1 (ω) ∝

1/ω2 at ω → 0. This is the form into which the Drude peak
transforms in the open chain.

For the interacting case, we divide the conductivity of
the open chain into the Drude part D(ω) and the “regular”
contribution,

σo
1 () = D(ω) + σo

reg. (31)

We calculate the Drude part within the Luttinger liquid (LL)
approximation (i.e., we neglect umklapp processes). For the in-

teracting case, the expression for the current operator does not
change since the interaction commutes with the local-density
operator, but the matrix elements of the current equation (28)
do change. To separate the Drude contribution, we estimate
the matrix element of the current for the interacting case.
Introducing a bosonic field � and its conjugate momentum
�, which satisfy the commutation relations [�(x),�(y)] =
iδ(x − y), we get the following Gaussian model as the effective
bosonic Hamiltonian of free fermions:

Ĥ ( = 0) = u( = 0)

2

∫ L

0
dx[(∂x�)2 + �2]. (32)

In the LL approach, the presence of the interaction  leads
simply to the rescaling of the bosonic field � → �̃ = √

K�

and modification of the sound velocity having the following
rescaling effect on the current:

Ĵ →
∫ L

0

∂t�√
π

dx =
√

K

∫ L

0

∂t �̃√
π

dx =
√

Ku

∫ L

0

�̃√
π

dx,

and the effective LL Hamiltonian of interacting fermions is

ĤXXZ = Ĥ ( = 0) + 
∑

i

Sz
l S

z
l+1


→ ĤLL = u()

2

∫ L

0
[(∂x�̃)2 + �̃2] dx.

The matrix element of
∫ L

0 �̃dx between the ground state and
excited states is calculated in the Appendix.

Thus, the effect of interactions on the Drude weight (the
singular contribution) boils down to rescaling of the matrix
elements of the total current for the free case (28) by the factor√

K , and of course the sound velocity u is also renormalized
by the interaction

D(ω) = π

Lω

∞∑
k=0

4Ku2

(2k + 1)π2
δ

(
ω − (2k + 1)uπ

L

)
. (33)

The integral of the Drude part D(ω) is exactly equal to that of
the Drude weight in a periodic chain:∫ ∞

0
D(ω) dω =

∑
K

4Ku

(2k + 1)2π2
= Ku

2
. (34)

Needless to say, as in periodic chains, the singular part D(ω)
almost exhausts the sum rule (18) for  � 1/4. The regular
part of the conductivity in open and periodic chains can,
generally speaking, be different, but the sum rule requires
that

lim
L→∞

∫ ∞

0

[
σo

reg − σreg
]
dω → 0.

Importantly, the leading size dependence of the CFS comes
from the singular part D(ω), and thus, in an open chain the
CFS scales quadratically with the system size:

χo
J = L

π

∫ ∞

0
dω

D(ω)

ω
=

∑
k=0

4KL2

(2k + 1)3π4
= 7ζ (3)

2π4
KL2.

(35)

Subleading corrections to the leading L2 behavior follow
both from the regular part σo

reg and from the singular part
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D(ω) due to the nonlinearity of the spectrum. This result
prominently illustrates the difference between the periodic
and open chains and shows that one has to be careful when
applying the CFS for detecting phase transitions: unless the
transition involves some divergences in the current correlators,
the leading contribution (35) will be “blind” to it, so the
divergence of χJ at the phase transition will be hidden in
the subleading terms [usually, the exponent μ that determines
the finite-size scaling of the divergent part of the FS at the
phase transition is some number between 1 and 2; see Eq. (3)].

We illustrate such “masking” on the example of the
attractive single-component Bose-Hubbard model with the
additional three-body occupation constraint:18

H = − t

2

∑
j

[b†j bj+1 + b
†
j+1bj ] − id

2

∑
j

[b†j bj+1 − b
†
j+1bj ]

+ U

2

∑
j

nj (nj − 1) + U3

∑
j

nj (nj − 1)(nj − 2),

(36)

where b
†
j and bj are the bosonic creation and annihilation

operators of particles at site j , nj = b
†
j bj , and the three-

body coupling constant U3 → ∞ forbids sites with more
than double occupancy. Figure 5 presents the DMRG results
for the FS study of the Ising phase transition between the
single-particle superfluid and pair superfluid states (see the
phase diagram in Ref. 18). The transition is easily detected by
looking at the FS with respect to the hopping part (changing
t), but when it is studied by looking at the current FS (i.e., the
parameter d is changed), it is masked for chains with o.b.c., as
seen in the bottom panel of Fig. 5.

D. Alternative derivation of the CFS scaling
for open boundary conditions

The CFS behavior in a spin-S XXZ chain with arbitrary
half integer S can be analyzed with the help of a different
approach, valid at any d as well as at finite magnetization M

(i.e., in the presence of some external magnetic field). Consider
a unitary transformation defined by the twist operator

Û [φ(d)] = eiφ(d)P̂ , P̂ =
∑

j

jSz
j , (37)

where φ(d) = arctan(d) and P̂ is the polarization operator,
or the “spin center of mass.” Applied to the Hamiltonian (4),
it removes the DM interaction for the price of changing the
anisotropy. Performing two such transformations, U (d) and
U (d + δd), one can transform the fidelity F (d,δd) into a
matrix element of the form

F (d,δd) = 〈ψ0(M,̃d )|eiδφ(d)P̂ |ψ0(M,̃d+δd )〉, (38)

where δφ(d) = φ(d + δd) − φ(d) and ̃d = /
√

1 + d2. Ex-
panding the fidelity up to quadratic terms in δd, one obtains

F (d,δd)  1 − 1
2δ2χ + iδφ〈ψ0(M,̃d )|P̂|ψ0(M,̃d+δd )〉

− 1
2δφ2〈ψ0(M,̃d )|P̂2|ψ0(M,̃d+δd )〉, (39)

0.3 0.4
t

0

1

2

χ t /
 L

100
L

1

10

100

1000

χ t

t = 0.25
t = 0.33
t = 0.5

U = −1, d = 0

1 1.5 2
d

0

1

2

3

χ J /
 L

100
L

10

1

100

1000

χ J

d = 1
d = 1.35
d = 2

U = −5, t = 1

FIG. 5. (Color online) Two different fidelity susceptibilities in the
Bose-Hubbard model with o.b.c. (36): (top) the FS χt with respect to
the hopping t and (bottom) the current FS χJ for open chains with
L = 16,32,64, and 96 sites (the curves from bottom to top). While χt

reveals nicely the underlying Ising phase transition between pair and
single-particle condensates, in χJ the finite-size scaling of the peak
is masked by its wings: both of them scale as ∼L2.

where δφ = δd/(1 + d2), δ = − 1
2(1 + d2)−3/2δd, and χ

is the FS with respect to the anisotropy,

χ = lim
δ→0

1 − |F (,δ)|2
δ2

.

χ scales with the system size L in a standard way,19 i.e.,
linearly, so it can be neglected if we are interested only in the
leading L dependence of χJ , which, as we can already guess,
is quadratic.

We will further assume that the total z projection of the
spin Sz

tot = ∑
j Sz

j = ML is a good quantum number; then
even at finite magnetization the ground-state wave function
|ψ0(M,̃)〉 can be made real, so that the geometric connection
term

〈ψ0(M,̃d )|P̂|ψ0(M,̃d+δd )〉 − (H.c.)
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vanishes. Then the leading term in the current FS can be written
as

χo
J (d,M)  1

(1 + d2)2
(〈P̂2〉 − 〈P̂〉2), (40)

where the averages here and in what follows are taken in the
ground state |ψ0(M,̃d )〉. This in turn leads to the formula

χo
J (d,M) =

∑L
j,j ′=1(j − j ′)2

(〈
Sz

j

〉〈
Sz

j ′
〉 − 〈

Sz
jS

z
j ′
〉)

2(1 + d2)2
, (41)

where we have again used the assumption that Sz
tot is conserved,

and hence, ∑
j,j ′

j 2
(〈
Sz

jS
z
j ′
〉 − 〈

Sz
j

〉〈
Sz

j ′
〉) = 0.

Note that the evaluation of the CFS is simplified drastically
for open boundary conditions since it is reduced to the task of
calculating the spin-spin correlation functions in the ground
state.

Only the smooth part of the correlation function 〈Sz
jS

z
j ′ 〉

contributes to the leading size dependence of χo
J . This smooth

part has the following universal behavior20 (see also Ref. 21,
where exact correlation functions for an open spin- 1

2 XY chain
have been calculated):〈
Sz

jS
z
j ′
〉 − 〈

Sz
j

〉〈
Sz

j ′
〉 = − K

2π2

[
1

f2(j − j ′)
+ 1

f2(j + j ′)

]
+ · · · ,

f2(x) =
[

2(L + 1)

π
sin

πx

2(L + 1)

]2

, (42)

where (· · ·) denotes oscillating terms and K = K(M,̃) is
the Luttinger liquid parameter that depends on the effective
anisotropy ̃ and the magnetization per site M . For S = 1

2 and
M = 0, it is given by

K(M = 0,̃) = π

2 arccos(−̃)
, ̃ = √

1 + d2
. (43)

In the limit L → ∞ one can transform the sums in (41)
into integrals. Introducing the relative and center-of-mass
coordinates, r = j − j ′ and R = (j + j ′)/2, we get∑

j,j ′

(j − j ′)2

f2(j − j ′)
→ 2

∫ L−r

0
dR

∫ L

0
dr

r2

f2(r)

= 2
∫ L

0
dr

(L − r)r2

f2(r)

= 4L2

π

∫ π/2

0
dy

(1 − 2y/π )y2

sin2 y

= 4L2

π2

[
−1

2
π2 ln 2 + 21

4
ζ (3)

]
(44)

and∑
j,j ′

(j − j ′)2

f2(j + j ′)
→ 2

∫ L/2

0
dR

∫ 2R

−2R

dr
r2

f2(2R)

= 4

3

∫ L/2

0
dR

(2R)3

f2(2R)
= 8L2

3π2

∫ π/2

0
dy

y3

sin2 y

= L2

π2
[2π2 ln 2 − 7ζ (3)]. (45)

We obtain the final result for the system size dependence
of the current FS in the gapless spin- 1

2XXZ chain with open
boundaries in the following form:

χo
J (d,M)

L2
= 7ζ (3)

2π4(1 + d2)2
K(M,̃) + · · · . (46)

For an S = 1
2 chain at zero magnetization, one can use

formula (43) for the LL parameter to obtain a closed expression
for the CFS; it is easy to see that χo

J (d = 0,M = 0) has a
singular behavior at  = 1.

The L2 dependence of the current FS is a generic feature
for gapless models with o.b.c. and conserved Sz, where one
can eliminate the current term (the DM interaction) by means
of a unitary “twist” operator (37) and where the smooth part
of the 〈Sz

jS
z
j ′ 〉 correlator decays like 1/|j − j ′|2.

E. Relation to the tilt fidelity susceptibility

In a spin chain with open boundaries, one can study another
quantity, which is, as we will show, related to the current
FS, namely, the fidelity susceptibility χP with respect to the
polarization operator P̂ = ∑

j jSz
j . For a spin- 1

2 chain, this
physically means a response to the gradient of the external
magnetic field. For the equivalent system of spinless fermions
this could be a response to the the “lattice tilt,” or if one
assumes that the particles are electrically charged, then this is
a response to the external electric field. The tilt FS is given by

χP =
∑
n�=0

|〈ψ0|P̂|ψn〉|2
(En − E0)2

. (47)

It is easy to see that the tilt FS is related to the “dynamic
polarizability” α(ω),

α(ω) = π

L

∑
n�=0

|〈ψ0|P̂|ψn〉|2δ[ω − (En − E0)], (48)

by the following formula:

χP = L

π

∫ ∞

0
dω

α(ω)

ω2
. (49)

On the other hand, one has

i[ĤXXZ,P̂] =
∑

l

l(Jl − Jl+1) = Ĵ ,

and thus σ1(ω) = ωα(ω), which leads to the following relation
between the tilt FS and the conductivity:

χP = L

π

∫ ∞

0
dω

σ1(ω)

ω3
. (50)

Thus, the leading term in the finite-size scaling of χP , similar
to the CFS χJ , will be determined just by the low-frequency
behavior of the conductivity. Using the formulas for the
conductivity, (31) and (33), one arrives at the following result:

χP = 31KL4ζ (5)

8u2π6
. (51)

For free fermions ( = 0), the above result can also be
reproduced directly in the same way as done in Eqs. (27)–(30)
for the conductivity, using the “density of states” (29) and the
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explicit expression for the matrix element (see the Appendix),

|〈ψ0|P̂|ψm〉| = L[1 − (−1)m]

(mπ )2
. (52)

Indeed, using the perturbative expression

χP =
∑
m>0

ρ(m)
|〈ψ0|P̂|ψm〉|2
(Em − E0)2

(53)

with the linearized spectrum Em − E0  uπm/L, one obtains
for free fermions

χP ( = 0) =
∞∑

k=0

4(2k + 1)L2

(E2k+1 − E0)2(2k + 1)4π4
= 31L4ζ (5)

8u2π6
.

(54)

For interacting fermions Sz gets the additional factor of
√

K

(see the Appendix), hence bringing us back to the general
result (51).

For the ratio of the current FS and the tilt FS in open chains
one obtains the universal result

L2χJ

χP
= 28u2π2ζ (3)

31ζ (5)
 10.3341u2. (55)

III. CURRENT FS IN THE FERMIONIC HUBBARD MODEL

Consider the Hubbard model for spin- 1
2 fermions (attractive

or repulsive) at arbitrary filling:

Ĥ0 = −
∑
j,σ

(c†j,σ cj+1,σ + H.c.) + U
∑

j

n2
i , (56)

where cj,σ annihilates a fermion at site j with the spin σ =
{↑,↓} and nj = ∑

σ c
†
j,σ cj,σ is the fermion density at the site.

We assume open boundary conditions and study the FS χo
J

with respect to the total current, Ĥ = Ĥ0 + λĴtot, with

Ĵtot = −i
∑
j,σ

(c†j,σ cj+1,σ − c
†
j+1,σ cj,σ ). (57)

The CFS can be calculated using the method of the unitary twist
operator, as described in Sect. II D for spin chains, with the
replacement of Sz

j by nj . One can closely follow all the steps
of the calculation presented above for a spin chain and express
the CFS through the density-density correlation function of
the Hubbard model. Assuming that its smooth part has a form
similar to Eq. (42), with K now being the charge Luttinger
parameter Kc of the Hubbard model, we obtain the leading
term in the finite-size scaling of the CFS as follows:

χo
J

L2
= 7ζ (3)

π4
Kc(ν,M) + · · · , (58)

where ν is the lattice filling and M is the magnetization.
Figure 6 shows the theoretical curve corresponding to Eq. (58)
for the repulsive Hubbard model at M = 0 versus numerical
results obtained by means of the DMRG technique for open
chains of up to L = 128 sites. The agreement between the
analytical expression and numerical results is quite good,
especially taking into account the fact that our analytical
result (58) concerns only the ∼L2 contribution.

Similar to the case of spin chains, one can study the tilt
FS χP (i.e., the response to the perturbation determined by

0 0.5 1n

0.01

0.02

χ J 
/ L

2

FIG. 6. (Color online) Current fidelity susceptibility of the
fermionic Hubbard model with o.b.c. for U/t = 1, 2 and 6 (top to
bottom). Symbols denote the DMRG data for Hubbard chains of
L = 128 sites. The lines correspond to the analytical expression (58).

Ŵ = ∑
j jnj ) of the fermionic Hubbard model with gapless

charge excitations. Physically, such a perturbation can be either
the lattice tilt (for atoms in optical lattices) or simply the
external electric field (for charged particles). Proceeding in a
close analogy to Sec. II E, we obtain

χP = 31KcL
4ζ (5)

4u2
cπ

6
. (59)

Finally, a few remarks are in order concerning the behavior
of Hubbard chains with p.b.c. One can again use the general
connection between the current FS and the conductivity, as we
have done for spin chains, but now the connection is between
the charge current FS and charge conductivity, respectively.
In the repulsive Hubbard model at half filling and at any
magnetization, the charge excitations are gapped, so we expect
the linear scaling of CFS independent of boundary conditions.
Away from the half filling, using the low-frequency result for
the conductivity of doped Mott insulators σreg(ω) ∼ ω3,22 one
again obtains a linear finite-size scaling, χp

J ∼ L, for any filling
ν and magnetization M . We also expect the same behavior
(linear scaling of the CFS with L) for the attractive case away
from half filling. For the attractive two-component fermions at
half filling (where umklapp is commensurate but irrelevant),
however, using the perturbative result17 σreg(ω) ∼ U 2ω4Kc−5,
one obtains

χ
p

J ∼ L, Kc � 5/4, χ
p

J ∼ L6−4Kc , 1 < Kc < 5/4. (60)

The Hubbard model (with purely on-site attraction) is special
since at half filling the charge sector enjoys SU (2) symmetry,23

fixing Kc = 1 (umklapp is marginally irrelevant), leading to
the behavior described by Eq. (24). Hence one has to consider
an extended Hubbard model for two-component attractive
fermions to check Eq. (60).

IV. CURRENT FS IN GAPPED SYSTEMS

Up to now, we have mostly dealt with systems that have
a gapless excitation spectrum (except for the comment on
the Hubbard model at half filling in the previous section). It
is easy to see that the system size dependence of the CFS
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in gapped systems is generically linear, χJ ∝ L, independent
of boundary conditions. The reason is that the Drude part
disappears in gapped phases, and the conductivity vanishes
at energies below the excitation gap ω0 (since no excited
states are available below the gap), σ1(ω) ∼ �(ω − ω0), where
�(x) is the Heaviside step function. Alternatively, for systems
with o.b.c., the unitary transformation approach of Sec. II D
(which is applicable in the case of a pure chain geometry,
i.e., in the absence of next-nearest-neighbor and longer-range
hoppings) can be utilized for gapped spin chains as well and
leads to formulas (40) and (41), which connect the CFS and the
reduced longitudinal spin-spin correlator. In a gapped system
(for example, in the Néel state of the spin- 1

2 XXZ chain at
 > 1 or in the Néel and rung-singlet phases of the spin- 1

2
XXZ ladder; see below), this correlator decays exponentially,
so the sum in (41) will be proportional to L. A similar argument
can be applied for fermionic or bosonic models.

Numerically, if the gap is extremely small, it may be difficult
to distinguish exponential decay from algebraic decay; for the
FS this would mean distinguishing the linear scaling χJ ∝ CL

with a large prefactor C from the quadratic scaling, χJ ∝ L2.
We illustrate the generic behavior of the CFS in gapped

systems on the example of the spin- 1
2 antiferromagnetic spin

ladder defined by the Hamiltonian

ĤLad =
∑
l,α

[
Sx

l,αSx
l+1,α + S

y

l,αS
y

l+1,α + Sz
l,αSz

l+1,α

]
+ JR

∑
l

	Sl,1 · 	Sl,2 + d
∑
l,α

(	Sl,α × 	Sl+1,α)z, (61)

where α = 1,2 denotes the two legs of the ladder. In Fig. 7, we
show the DMRG results for the CFS in the vicinity of the Ising
quantum phase transition between the Néel and rung-singlet
states. Ordinary quadratic scaling of the CFS peak at transition
and linear scaling of the wings are observed.

However, there are peculiar cases when the CFS may have
a nontrivial finite-size scaling in a gapped system with open

0 1 2 3
d

0

0.1

0.2

χ J 
/ L

0 50 100 150L
0

0.1

0.2

χ J /
 L

FIG. 7. (Color online) The CFS of a spin- 1
2 antiferromagnetic

ladder defined by (61), with o.b.c., in the vicinity of the Ising phase
transition from the Néel to the rung-singlet state for JR = 3 and
 = 1.5 and system sizes L = 16, 32, 64, and 128 rungs. The inset
shows that the peak of the CFS per site at the transition point scales
linearly with the system size.

boundaries. Namely, in a topologically ordered system, the
presence of entangled edge spins localized at the boundaries
may render the sum in (41) ∼L2, despite the exponentially
decaying correlation function. Let us take the spin-1 Haldane
chain as an example. The topologically ordered24,25 ground
state of the open Haldane chain is nearly fourfold degenerate26

due to the presence of spin- 1
2 edge spins localized at the

boundaries: the lowest state is a singlet, which is split from the
Kennedy-Tasaki triplet by the exponentially small “boundary
gap” ∝ e−L/ξ , where ξ ∼ 6 is the bulk correlation length. In the
singlet ground state, the reduced correlator between the edge
spins remains finite, so, according to (41), χJ ∝ L2. It is clear
that this behavior will be typical for any state characterized by
the presence of edge spins that are nonlocally entangled with
each other.

The scaling of χJ will be very sensitive to the numerical
errors; for example, if one accidentally takes a nonentangled
member |↑↑〉 of the Kennedy-Tasaki triplet as the ground state,
the reduced correlator between the edge spins will become
zero, resulting in the generic linear behavior χJ ∝ L.

V. SUMMARY

Combining numerical simulations with analytical argu-
ments based on bosonization, we have studied the finite-size
scaling of the current fidelity susceptibility χJ with respect to
the charge or spin currents in one-dimensional lattice models.

For both periodic and open boundary conditions DMRG
scaling was performed for different matrix dimensions m

until a good convergence of fidelity susceptibility within four
significant figures was reached (for larger system sizes up to
m ∼ 1000 was needed for periodic chains, although much less
for open chains).

We related current fidelity susceptibility to the low-
frequency behavior of the corresponding conductivity and
identified the main reason for different scaling laws in the
gapless systems with open and periodic boundary conditions
as the absence of the zero mode of the current operator
for the former case. For systems with p.b.c. χJ is directly
connected to the low-frequency behavior of the regular part
of the conductivity, while in open systems the leading system
size dependence of χJ is determined by the singular part of
the conductivity that is essentially the smeared Drude peak.

For the systems with o.b.c. we obtained the universal
quadratic scaling χJ ∝ L2, which obscures the detection of
quantum phase transitions between two gapless regions by
studying the finite-size scaling of the peak in χJ . Furthermore,
for open chains we related χJ with the tilt fidelity susceptibility
that describes the response to the gradient of the chemical
potential.

In future studies, it would be very helpful to perform
numerical calculations of χJ for large periodic spin- 1

2 XXZ

chains L > 100 to confirm further the leading nontrivial
low-frequency behavior of the regular part of the conductivity
predicted by Giamarchi17 for  � 1. It could also be inter-
esting to study 1D models with infinite-size methods such as
infinite, time evolving block decimation algorithm27 or infinite
size DMRG28 and to determine the scaling of χJ with the
matrix dimension. Similar studies in higher dimensions could
also be interesting.
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APPENDIX

In this appendix, we derive analytical expressions for matrix
elements of the total momentum

∫ L

0 �̃ dx and the center-of-

mass operator
∫ L

0 x∂x�̃(x) dx between the vacuum and excited
states of the Gaussian bosonic model, with fields vanishing at
the boundary x = 0 and x = L.

We start with the total momentum operator. It is convenient
to expand the bosonic fields in the Fourier modes of the open
string,

�̃(x) =
√

2

L

∞∑
n=1

sin
πnx

L
φ̃n,

(A1)

�̃(x) =
√

2

L

∞∑
n=1

sin
πnx

L
π̃n,

which guarantees vanishing boundary conditions for fields
�̃(0) = �̃(0) = �̃(L) = �̃(L) = 0. The inverse relations,

φ̃n =
√

2

L

∫ L

0
sin

πnx

L
�̃(x) dx,

(A2)

π̃n =
√

2

L

∫ L

0
sin

πnx

L
�̃(x) dx,

imply that zero modes for the open chain do not exist,

φ̃0 ≡ 0, π̃0 ≡ 0. (A3)

Commutation relations of the Fourier modes are canonical,

[φ̃n,π̃m] = iδn,m. (A4)

The total momentum operator in terms of the Fourier
components can be rewritten as∫ L

0
�̃ dx =

∫ L

0

√
2

L

∞∑
n=1

sin
πnx

L
π̃n dx

=
√

2L

∞∑
n=1

1 − (−1)n

πn
π̃n, (A5)

and the Luttinger liquid Hamiltonian reads

ĤLL = u

2

∫ L

0
[(∂xφ̃)2 + �̃2]dx = u

2

∞∑
n=1

[
π̃2

n +
(

πn

L

)2

φ̃2
n

]

= πu

L

∑
n>0

n

[
ã†

nãn + 1

2

]
=

∑
n>0

ωnã
†
nãn + E0.

Here

ã†
n =

√
L

2πn
π̃n + i

√
πn

2L
φ̃n, ãn =

√
L

2πn
π̃n − i

√
πn

2L
φ̃n

(A6)

are the standard bosonic creation and annihilation operators,
ãn|0〉 = 0, satisfying the commutation relations [ãn,ã

†
m] =

δn,m and defining the eigenstates ĤLLã
†
n|0〉 = (ωn + E0)ã†

n|0〉.
The total momentum operator in this basis obtains the

following form:∫ L

0
�̃ dx =

∑
n

1 − (−1)n√
πn

[ãn + ã†
n]. (A7)

Hence,

〈n|
∫ L

0
�̃dx|0〉 = 1 − (−1)n√

πn
. (A8)

The matrix elements of the fermionic total current are obtained
from the relation

Ĵ →
√

Ku√
π

∫ L

0
�̃ dx,

so that

ρ(n)|〈ψn|Ĵ |ψ0〉|2 = Ku2

π
|〈n|

∫ L

0
�̃dx|0〉|2

= Ku2[1 − (−1)n]2

π2n
. (A9)

Note that in the bosonized formulation for each excitation
En = uπn/L + E0 there is a corresponding single state |n〉 =
ã
†
n|0〉 obtained from the vacuum by acting with the total

momentum operator; in other words, the bosonic density of
states is ρbosonic(n) = 1, as opposed to the fermionic picture
where ρ(n) = n.

In a similar way, we can calculate the matrix elements of
the polarization (center-of-mass) operator

P̂ =
∑

j

jSz
j 
→ −

√
K

π

∫ L

0
x∂x�̃(x) dx.

One obtains

−
∫ L

0
x∂x�̃(x)dx = −

∑
n

√
2L

πn
φ̃n

∫ πn

0
y cos y dy

=
√

2L
∑

n

1 − (−1)n

πn
φ̃n. (A10)

On the other hand,

φ̃n =
√

2L

πn

ã
†
n − ãn

2i
; (A11)

hence,

−
∫ L

0
x∂x�̃(x) dx = L

∑
n

1 − (−1)n

(πn)3/2

ã
†
n − ãn

i
. (A12)

Using similar reasoning as for deriving Eq. (A9), we arrive at
the generalization of Eq. (52) for the interacting case:

ρ(n)|〈ψn|P̂|ψ0〉|2 = KL2[(1 − (−1)n)]2

π4n3
. (A13)
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