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Band-to-Mott-insulator transformations in four-component alkali-metal fermions at half-filling
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Under the influence of an external magnetic field and spin-changing collisions, the band insulator state of
one-dimensional s-wave repulsively interacting four-component fermions at half-filling transforms into Mott
insulator states with a spontaneously doubled unit cell: a dimerized state for shallow lattices and a Néel state for
deep lattices via an intermediate topological state. These Mott insulator phases could be of special interest for
experiments as they can be reached starting from band insulator state and changing magnetic field adiabatically.
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One of the outstanding open questions in condensed matter
theory is whether the two-dimensional (2D) Hubbard model
of electrons is the minimal model that captures the behavior
of high-Tc superconductors. In reduced spatial dimensions
enhanced quantum and thermal fluctuations often invalidate
mean-field-like treatments. In 2D, a rigorous analytical ap-
proach, like one-dimensional (1D) Bethe ansatz, does not
exist and there is limited support from unbiased large-scale
numerical simulations because of the notorious negative
sign problem of Monte Carlo calculations. Ultracold spinor
fermions in optical lattices present an extraordinary tool
for simulating the 2D Hubbard model under well-controlled
conditions [1,2]. The metal-to-Mott-insulator (MI) transition
was experimentally observed with two-component Fermi
gases [3,4]. At sufficiently low temperatures the MI phase
should acquire a magnetic Néel (antiferromagnetic) ordering.
Still it has not been resolved [5]; the main obstacle is the
absence of efficient cooling methods in the presence of an
optical lattice [6].

By increasing the number of components above two, an
interesting possibility of hosting exotic ground states like 2D
spin liquids [7,8] or 1D topological states [9,10] emerges.
A novel ingredient in multicomponent alkali-metal gases,
different from the two-component case, is the presence of
spin-changing collisions: two interacting atoms cannot only
exchange their initial internal hyperfine states, but they can
also change them to new values. The spin-changing collisions
open a fascinating prospect to arrive at unconventional MI
ground states of multicomponent Fermi gases starting from
the band insulator (BI) state made of only two components
having vanishing entropy per particle. For fermions due to the
Pauli principle the minimal number of components required
for BI to MI transformation is four.

In this work we present the ground-state phases of four-
component alkali-metal fermions at half-filling obtained by
nonperturbative analytical and numerical tools, particularly
tailored for studying 1D systems. We identify various MI
phases: Dimer and Néel states spontaneously break discrete
lattice translational symmetry and are characterized by doubly
degenerate ground state in thermodynamic limit and local
order parameters; whereas singlet and a topological Haldane
phase do not break any microscopic symmetry and are
characterized by unique ground state and nonlocal parity and
string orders, respectively. Even though these different MI
phases are manifested below the ultralow temperatures, typical

to the superexchange scale, the fact that one can start from the
BI state and by adiabatically changing the magnetic field enter
into these nontrivial states, makes the system of half-filled
four-component alkali-metal fermions a particularly attractive
candidate to resolve ground-state spin order in experiments on
ultracold lattice gases. Note that the spin-changing collision
processes, crucial for BI to MI transformations, are maximally
pronounced at half-filling.

Our main result, the ground-state phase diagram of four
components of 40K atoms, is presented in Fig. 1. Most
importantly all states can be explored just by changing the
lattice depth and strength of the external magnetic field
without the need to modify the natural values of scattering
lengths. This phase diagram is not particular of 40K atoms; it
captures generic phases of repulsive four-component alkali-
metal fermions at half-filling, provided these components
do not form complete hyperfine multiplet. For the case of
hyperfine spin f = 3/2, due to the unusually large internal
symmetry [12] holding even for finite quadratic Zeeman
coupling [13], only dimer and singlet MI phases are realized
as depicted in Fig. 3(b). Singlet phases are connected to the BI
state with crossover behavior.

f = 3/2 multiplet. We start from the case of a hyperfine
spin f = 3/2 [14]. The lattice Hamiltonian that describes s-
wave interacting fermions in the presence of quadratic Zeeman
coupling q is given by

H =
L∑

j=1

H0,j +
L∑

j=1

Hint,j ,

H0,j =
3/2∑

α=−3/2

[−t (ψ†
α,jψα,j+1 + H.c.) − qα2 nα,j ], (1)

Hint,j =
∑

F,|mF |�F

gF P
†
F,mF

(j )PF,mF
(j ).

The operator ψα annihilates an atom in the hyper-
fine spin state |f = 3/2,mf = α〉 and nα,j = ψ

†
α,jψα,j .

Interaction coefficients gF are proportional to scattering
strengths ∼4πh̄2aF /m [15], where m is the atomic mass,
aF are the s-wave scattering lengths, and P

†
F,mF

(j ) =∑
α,β〈F,mF |αβ〉ψ†

α,jψ
†
β,j create on-site pairs with total spin

F and projection mF .
Due to the Pauli principle only channels with F = 0, 2 are

allowed in the low-energy scattering. Interactions are assumed
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FIG. 1. (Color online) Numerical ground-state phase diagram
for a four-component mixture of 40K atoms at half-filling with
average interaction energy U ∼ 4πh̄2
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8 being the s-wave scattering lengths of the lowest hyperfine

ground-state manifold f = 9/2 of 40K) and quadratic Zeeman
coupling q both in units of hopping t [11]. Dotted line indicates sharp
crossover between BI and MI and continuous lines are quantum phase
transition lines, crossing at multicritical point M.

to be repulsive and we concentrate on the case of two fermions
per lattice site on average and zero net magnetization Nα =
N−α , where Nα = ∑

j 〈nα,j 〉.
Usually, in alkali-metal atoms, differences between the

s-wave scattering lengths are a few percent of the average
scattering length, hence deviations from SU (4) symmetry
(a0 = a2 case) are small. In the vicinity of the SU (4)
point, without magnetic field, a unique gapped phase with
spontaneously doubled lattice constant and dimer order (spin
Peierls) is realized [16,17]; it has an order parameter D =
| ∑α,j (−1)j 〈ψ†

α,jψα,j+1〉|/(L − 1) > 0. We show that for
a0 �= a2 the magnetic field above a critical value restores trans-
lational symmetry via quantum phase transition belonging to
the second-order Ising universality class and the system enters
a site-singlet state that is adiabatically connected to the BI
of the two-component Fermi Hubbard model. For the case
a0 = a2, as in alkali-metal earth atoms [18], the dimer state is
separated from BI by a gapless Luttinger liquid state.

For the two-component repulsive Hubbard model at
half-filling the charge sector is gapped and the low-energy
effective theory is described by the spin sector. Similarly, in
the case of four-component fermions at half-filling, the charge
sector is gapped and instead of one spin sector there are three
flavor sectors described by the set of dual bosonic fields φη

and θη (η = v,t1,t2), ∂xφv ∼ n 3
2 ,j + n− 3

2 ,j − n 1
2 ,j − n− 1

2 ,j ,
∂xφt1,t2 ∼ n 3

2 ,j − n− 3
2 ,j ∓ n 1

2 ,j ± n− 1
2 ,j with [θη(x),∂yφη′] =

iδη,η′δ(x − y). All flavor sectors are generically
gapped [19]. The quadratic Zeeman effect couples
only to the chiral sector φv . Chirality is defined as
τ = 1

2L

∑
j 〈[n 3

2 ,j + n− 3
2 ,j − n 1

2 ,j − n− 1
2 ,j ]〉; it measures

imbalance between ± 1
2 and ± 3

2 components. With relevant
4kF Umklapp processes, the important low-energy sector is
governed by the following Hamiltonian density,

Hv = vv

2

{
Kv(∂xθv)2 + 1

Kv

(∂xφv)2

}

− g cos
√

4πφv − gγ cos
√

4πθv − 2q√
π

∂xφv, (2)

where vv =
√

v2
F + (g0 − 3g2)vF /2π , Kv =√

2πvF /(2πvF + g0 − 3g2), vF being the Fermi velocity
of free fermions. Coupling constants g ∼ g0 + g2 and
gγ ∼ g2 − g0, include proportionality coefficients involving
ultraviolet cutoff and averages of massive charge and φt1,2

fields which are governed by bosonic Hamiltonians of the
sine-Gordon type [19].

Setting vv = Kv = 1 the effective model in Eq. (2) is
diagonalized by the refermionization procedure [20] and Bo-
goliubov transformation. The low-energy excitation spectrum
allows us to locate quantum phase transition and determine
its nature. In general for gγ �= 0 the excitation spectrum is
gapped, except at a critical magnetic field q = qc. The low-
energy spectrum is given by two fermionic branches, ω±(k) =√

g2+ g2
γ + 4q2 + k2 ± 2

√
g2g2

γ + 4q2(g2 + k2). Only one

branch becomes gapless for qc =
√

g2 − g2
γ /2, ω−(k) =

v−|k| + O(k2). The velocity of the linear mode, at the
criticality is v− = gγ /g and the transition belongs to the
2D Ising universality class [21]. For gγ = 0 (with additional
U (1) symmetry corresponding to conservation of chirality),
at q = qc = g/2, the linear velocity vanishes and the Ising
transition transforms into a commensurate-incommensurate
one [20] with characteristic quadratic (nonrelativistic) low-
energy dispersion ω−(k) 	 k2/2g.

The dimer phase is realized for q < qc and transforms into
singlet phases for q > qc. Two singlet phases, corresponding
to gγ > 0 → 〈θv〉 = 0 and gγ < 0 → 〈θv〉 = √

π/2 cases,
respectively, are separated by a Gaussian phase transition
between each other at smaller values of q > qc, however, both
of them evolve adiabatically into the BI state with increasing q.
The singlet phases can be approximated as |S〉 ∼ ∏

j |S〉j ,

where |S〉j = | 3
2 〉j ⊗ | − 3

2 〉j − ζ±| 1
2 〉j ⊗ | − 1

2 〉j , with ζ± →
±1 for q → 0 and |ζ±| → 0 after the crossover into BI. The
dependence of chirality and chirality susceptibility obtained
from the effective model Eq. (2) at the dimer-to-singlet-phase
transitions for different values of gγ is depicted in Fig. 2.

FIG. 2. (Color online) Chirality versus quadratic Zeeman cou-
pling (dashed lines) for different values of gγ (gγ = 0 for the
rightmost curve and gγ = g for the leftmost curve). Intersections of
the continuous line with the dashed lines give qc and critical value of
chirality. Inset shows chirality susceptibility and for rightmost curve
the divergence corresponds to the commensurate-incommensurate
phase transition.
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FIG. 3. (Color online) (a) Scaling of the dimer order parameter in
the vicinity of dimer-to-singlet-phase transition for different system
sizes. The inset shows the collapse of all finite-system-size data to
a single curve, confirming Ising criticality. (b) Ground-state phase
diagram for repulsive f = 3/2 alkali-metal fermions at half-filling,
as function of q (in units of t) and γ = (g2 − g0)/2t for the case of
(g2 + g0)/2 = 10t .

To check the phase diagram at strong couplings (relevant
for experiments) we use density matrix renormalization group
(DMRG) calculations for open boundary conditions [22]. We
keep on average up to 800 states and L = 60 sites, comparable
to the number of occupied lattice sites per chain in [23]. We
monitor directly dimer order parameter D. The scaling of
dimer order and a collapse of the data for different system
sizes on a single curve depicted in Fig. 3(a) confirms the
Ising character of dimer to singlet phase transition D ∼
�(qc − q)(qc − q)1/8 for q → qc as predicted from effective
model Eq. (2). The numerical ground-state phase diagram
for f = 3/2 fermions at half-filling is depicted in Fig. 3(b).
Fidelity susceptibility (not shown) has a pronounced peak, both
at dimer-to-singlet-phase transition as well as at the singlet to
BI crossover, however, for the latter case the height does not
scale with system size, indicating absence of phase transition,
but rather the presence of a sharp crossover between singlet
and BI states. In the BI state chirality (quasi)saturates τ 	 1.

The Ising phase transition between dimer and singlet
phases, induced by an external magnetic field, generalizes
the one that was predicted for q = 0 and gγ = g using
bosonization analysis [19] when changing the scattering
lengths a0 or a2. In case of attractively interacting f = 3/2
fermions similar phase transition happens between singlet
and quartetting phases [24,25]. Our work suggests that this
phase transition can be induced by an external magnetic field

via quadratic Zeeman coupling, without the need to change
scattering lengths, thereby presenting certain advantages for
experiments.

Relevant model for 40K atoms. To address the nature of
ground states for the four-component mixture of 40K atoms
we have to break the rotational symmetry associated with
the hyperfine spin f = 3/2. We relabel the states from the
f = 9/2 manifold that were used in experiment [23] as fol-
lows, mf = 9/2 → 3/2, mf = 1/2 → −3/2, mf = 7/2 →
1/2, and mf = 3/2 → −1/2, so that the lattice Hamiltonian
is again given by Eq. (1), but with the modified quartic part,

Hint,j =
∑
α<β

Uα,βnα,jnβ,j

+Uγ

[
ψ

†
1
2 ,j

ψ
†
− 1

2 ,j
ψ 3

2 ,jψ− 3
2 ,j + H.c.

]
. (3)

All interaction constants, Uα,β , are different combinations of
the scattering lengths (aK

2 , aK
4 , aK

6 , aK
8 ) reported in [23] and

spin-changing interaction amplitude Uγ ∼ 4πh̄2

m
(aK

8 − aK
6 ).

For q = 0 starting from the t = 0 and performing degener-
ate perturbation theory in t2/U one can show that a classical
(Ising) Néel state is energetically favorable in the deep lattice
limit. The Néel state is made of the original mf = 1/2 and
mf = 3/2 components paired on odd sites while mf = 9/2
and mf = 7/2 paired on even sites (or vice versa). The
pairing of mf = 1/2 and mf = 3/2 components minimizes
the interaction energy per lattice site, and due to constraint:
N1/2 = N9/2 and N3/2 = N7/2, other L/2 sites are occupied by
mf = 9/2 and mf = 7/2 pairs. Activating t introduces Néel
order due to delocalization energy gain.

To study effects of quadratic Zeeman coupling we use
infinite system size DMRG [26] calculations, keeping on
average 200 states, and monitor different order parameters
depicted in Fig. 4. Explicit expressions of nonlocal parity [27]
and string orders can be borrowed from the corresponding
orders of S = 1 spin chain [28] by identifying Néel up
(mf = 1/2 and mf = 3/2 pairs) and down (mf = 9/2 and
mf = 7/2 pairs) components with Sz = +1 and Sz = −1
states, Sz

j = (n 9
2 ,j + n 7

2 ,j − n 3
2 ,j − n 1

2 ,j )/2 and on-site sin-
glets (initial pairs of BI composed of mf = 9/2 and mf = 1/2
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FIG. 4. (Color online) Quadratic Zeeman coupling (measured in
units of t) dependence of the order parameters along a cut of Fig. 1 for
U/t = 20. Neel, parity, and string orders are given, respectively, by
limn�1(−1)n〈Sz

jS
z
j+n〉, 〈eiπ

∑
j Sz

j 〉, and limn�1〈Sz
j e

iπ
∑

j<k<j+n Sz
k Sz

j+n〉.
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components) with Sz = 0. The sequences of phase transitions
in strong coupling induced by q are shown in Fig. 4. For
deep lattices the emergence of Néel and Haldane phases in the
presence of quadratic Zeeman coupling is a generic feature
of four-component fermions with spin-changing processes
allowed for f �= 3/2. The Haldane phase can intuitively be
understood as a Néel order diluted with the defects that
represent on-site singlets of the BI state.

For shallow lattices, as depicted in Fig. 1, a dimer state wins,
consistent with weak-coupling bosonization analysis. For the
experimental values of scattering lengths in [23], the transition
from dimer to Néel state happens in the strong coupling regime
with increasing lattice depth, where bosonization cannot be
trusted. However one can induce similar phase transition in
weak coupling by changing interaction coefficients in Eq. (3).
In the dimer phase the fields are pinned as follows: 〈φv〉 =
〈φt1〉 = 〈φt2〉 = 0, whereas in the Néel phase, 〈φv〉 = 〈φt1〉 =
0 and 〈φt2〉 = √

π/2 [19]. Hence, in dimer-to-Néel transition
only the φt2 sector is involved, and moreover one can show that
the phase transition is Gaussian. With increasing q an Ising
phase transition happens from Néel to Haldane phase in the
φv sector also captured by the effective model of Eq. (2). The
expectation values of bosonic fields in the Haldane phase are as
follows: 〈θv〉 = 〈φt1〉 = 0 and 〈φt2〉 = √

π/2, and with further
increasing q the singlet state should be recovered, with 〈θv〉 =
〈φt1〉 = 〈φt2〉 = 0. Occurrence of the Haldane phase between
Néel and singlet MI is thus natural in bosonization. Between
the Haldane phase and singlet (like between dimer and Néel)
a Gaussian criticality from the gapless φt2 sector is expected,
characterized by nonuniversal exponents. This is in agreement
with DMRG results failing to capture universal exponents at
these phase transitions and confirming their smooth nature
(second order). The complete numerical ground-state diagram
is presented in Fig. 1.

In summary. A rich ground-state phase diagram of half-
filled four-component repulsively interacting alkali-metal
fermions can be explored by changing the lattice depth and
the quadratic Zeeman coupling, without the need to change

the scattering lengths. For the case of f = 3/2 fermions,
dimer and singlet phases are realized; whereas when four
components are from f > 3/2 multiplet, like 40K atoms,
four distinct gapped MI phases are expected. The primary
candidate to observe different MI states presented in this
work is a system of 40K atoms under the similar conditions
as in recent experiment [23] where initially a state of two
fermions per site was stabilized by the quadratic Zeeman
effect, the starting state being a BI of the two-component Fermi
Hubbard model. Although the 40K atoms were loaded in a 3D
lattice, hopping was allowed only along one direction, and
since s-wave interactions are felt on-site the system studied
experimentally was a collection of 1D decoupled lattices. If
the spin-changing processes will be activated by adiabatically
reducing the magnetic field, different MI states of Fig. 1 may
be reached.

These MI phases may be detected with the current state-of-
the-art techniques, e.g., using Faraday rotation as proposed
in [29]. Due to a shallow harmonic trap along the lattice
the MI phases will occupy the same central region as the
BI does [23]. For the case f �= 3/2 we have neglected the
finite possibility of production of other than four hyperfine
components. Indeed for deep lattices the number of mf =
5/2 and mf = −1/2 components produced after the quench
of magnetic field in the BI state is negligibly small [23].
However, one can use this possibility to pinpoint the Néel
phase using Stern-Gerlach techniques in time of flight. If
one freezes the ground-state configuration by sudden increase
of lattice depth only mf = 1/2 and mf = 3/2 pairs can
produce mf = 5/2 and mf = −1/2 components and this
process will be maximally enhanced in the Néel phase, whereas
mf = 9/2 and mf = 7/2 components do not experience
spin-changing collisions, hence their number will not decrease
in time.

This work has been supported by Center for Quantum
Engineering and Space-Time Research (QUEST) and DFG
Research Training Group (Graduiertenkolleg) 1729.
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