775 research outputs found

    Performance of Quercus suber L. at nursery stage - application of two bio-inoculants under two distinct environments

    Get PDF
    Key message - Despite the fact that the technique of application of bioinoculants improved the quality of Quercus suber L. seedlings produced in nurseries, these benefits are dependent on the ecological conditions of the site and the composition of the applied inoculum, which interferes with the profile of the local fungal community. Context - Quercus suber L. plays a key ecological and socio-economical role in the Iberian Peninsula. Symbiotic ectomycorrhizal fungi-ECM are crucial partners of several tree species, and assessing the efficacy of bioinoculants at nursery stage helps devising tools to increase plant resilience. Aims - The aim of this study was to compare the effects of two inocula formulations of mixed ECM fungi and bacteria on the quality of seedlings produced in two forest nurseries, differing in environmental conditions and forest embedment. Methods - Quercus suber L. seedlings were inoculated with a commercial product containing Pisolithus tinctorius (Pers) Coker Couch - Scleroderma sp., and six bacterial species and with a non-commercial fungal and bacterial dual inoculum (Suillus granulatus (L.) Roussel + Mesorhizobium sp.). Biometric and nutritional parameters and morphological quality indexes were determined on seedlings. The ECMcommunity was assessed by denaturing gradient gel electrophoresis and cloning-sequencing. Results - In both nurseries, the seedling quality index in inoculated was up to 2-fold higher than in non-inoculated seedlings. Plant biomass differed significantly among nurseries. The inoculum influenced the profile of the fungal community. S. granulatus and P. tinctorius persisted for 6 months in the inoculated seedlings. Conclusion- The nursery ecosystem influenced plant growth. Inoculation treatments increased plant performance; however, the dual inoculum resulted in more consistent improvements of Q. suber at nursery stage, highlighting the importance of inocula selection.info:eu-repo/semantics/publishedVersio

    Application of maize and efficient rhizospheric microorganisms for the remediation of saline soils

    Get PDF
    Soil salinity is a serious problem causing loss of fertility, as plants facing salt stress suffer alterations in physiology that adversely affects its growth. This work aimed to evaluate the effectiveness of combinations of microorganisms for the recovery of crop productivity in soils affected by different levels of salinity (0, 2.5 and 5 gNaCl.kg-1). The strategy relied on the culture in greenhouse conditions of a high value food and energetic crop (maize) inoculated with soil plant growth promoting microbiota – an arbuscular mychorrizal fungi (Rhizophagus irregularis), a rhizobacteria (Pseudomonas reactans) and a bacterial endophyte (Pantoea ananatis). Plant biomass was assessed at harvest and differences between treatments were analysed. As the work also aimed to relate the effects of bioinoculation to alterations in plant response to salt stress, further parameters were assessed. Elevated salt levels induce ionic stress, with consequent nutrient imbalance; therefore, levels of Na, K and Ca were determined in plant tissues. As salt is also a major stress to soil organisms, rhizosphere samples were analysed to follow up of microbiota survival by molecular biology techniques (DGGE), assessing the effect of soil salinity at the different tested levels on the inoculated soil microorganisms persistence and relationship with the existing community. The collected information allowed understanding the effects of the applied biologically based treatments in the quality of the tested saline soils, on the dynamics of the present microbiota and on maize growth, focusing on the further development of cropping strategies for saline soils, grounded on sustainable agriculture practices.info:eu-repo/semantics/publishedVersio

    Thermal liquid biopsy (Tlb): A predictive score derived from serum thermograms as a clinical tool for screening lung cancer patients

    Get PDF
    Risk population screening programs are instrumental for advancing cancer management and reducing economic costs of therapeutic interventions and the burden of the disease, as well as increasing the survival rate and improving the quality of life for cancer patients. Lung cancer, with high incidence and mortality rates, is not excluded from this situation. The success of screening programs relies on many factors, with some of them being the appropriate definition of the risk population and the implementation of detection techniques with an optimal discrimination power and strong patient adherence. Liquid biopsy based on serum or plasma detection of circulating tumor cells or DNA/RNA is increasingly employed nowadays, but certain limitations constrain its wide application. In this work, we present a new implementation of thermal liquid biopsy (TLB) for lung cancer patients. TLB provides a prediction score based on the ability to detect plasma/serum proteome alterations through calorimetric thermograms that strongly correlates with the presence of lung cancer disease (91% accuracy rate, 90% sensitivity, 92% specificity, diagnostic odds ratio 104). TLB is a quick, minimally-invasive, low-risk technique that can be applied in clinical practice for evidencing lung cancer, and it can be used in screening and monitoring actions

    1,1,3,3-tetramethylguanidinium dihydrogenorthophosphate

    Get PDF
    In the title compound, C 5 H 14 N 3 + H 2 PO 4 ˇ , the cation has a central guanidinium fragment with a planar geometry, as expected for a central C sp 2 atom with a small charge delocalization along the three C–N bonds. The crystal packing is governed by hydrogen bonds so that the phosphate anions are linked head to tail, forming chains running parallel to the c direction. These chains in turn are interconnected by hydrogen bonds to intermediate tetramethylguanidinium cations forming hydrogen-bonded molecular layers stacked parallel to the bc crystal planesCICYT PB98-112

    Naphthochromenones: Organic Bimodal Photocatalysts Engaging in Both Oxidative and Reductive Quenching Processes

    Get PDF
    Twelve naphthochromenone photocatalysts (PCs) were synthesized on gram scale.They absorb across theUV/Vis range and feature an extremely wide redox window (up to 3.22 eV) that is accessible using simple visible light irradiation sources (CFL or LED). Their excited-state redox potentials, PC*/PCC (up to 1.65 V) and PCC+/PC* (up to 1.77 V vs. SCE), are such that these novel PCs can engage in both oxidative and reductive quenching mechanisms with strong thermodynamic requirements. The potential of these bimodal PCs was benchmarked in synthetically relevant photocatalytic processes with extreme thermodynamic requirements. Their ability to efficiently catalyze mechanistically opposite oxidative/reductive photoreactions is a unique feature of these organic photocatalysts, thus representing a decisive advance towards generality, sustainability, and cost efficiency in photocatalysis
    corecore