223 research outputs found

    Members of the fatty acid binding protein family are differentiation factors for the mammary gland

    Get PDF
    Mammary gland development is controlled by systemic hormones and by growth factors that might complement or mediate hormonal action. Peptides that locally signal growth cessation and stimulate differentiation of the developing epithelium have not been described. Here, we report that recombinant and wild-type forms of mammary-derived growth inhibitor (MDGI) and heart-fatty acid binding protein (FABP), which belong to the FABP family, specifically inhibit growth of normal mouse mammary epithelial cells (MEC), while growth of stromal cells is not suppressed. In mammary gland organ culture, inhibition of ductal growth is associated with the appearance of bulbous alveolar end buds and formation of fully developed lobuloalveolar structures. In parallel, MDGI stimulates its own expression and promotes milk protein synthesis. Selective inhibition of endogenous MDGI expression in MEC by antisense phosphorothioate oligonucleotides suppresses appearance of alveolar end buds and lowers the beta-casein level in organ cultures. Furthermore, MDGI suppresses the mitogenic effects of epidermal growth factor, and epidermal growth factor antagonizes the activities of MDGI. Finally, the regulatory properties of MDGI can be fully mimicked by an 11-amino acid sequence, represented in the COOH terminus of MDGI and a subfamily of structurally related FABPs. This peptide does not bind fatty acids. To our knowledge, this is the first report about a growth inhibitor promoting mammary gland differentiation

    Monoallelic maternal expression of STAT5A affects embryonic survival in cattle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reproductive disorders and infertility are surprisingly common in the human population as well as in other species. The decrease in fertility is a major cause of cow culling and economic loss in the dairy herd. The conception rate has been declining for the past 30–50 years. Conception rate is the product of fertilization and embryonic survival rates. In a previous study, we have identified associations of several single nucleotide polymorphisms (SNPs) in the signal transducer and activator 5A (<it>STAT5A</it>) with fertilization and survival rates in an <it>in </it>vitro experimental system. The objectives of this study are to fine map the <it>STAT5A </it>region in a search for causative mutations and to investigate the parent of origin expression of this gene.</p> <p>Results</p> <p>We have performed a total of 5,222 fertilizations and produced a total of 3,696 in vitro fertilized embryos using gametes from 440 cows and eight bulls. A total of 37 SNPs were developed in a 63.4-kb region of genomic sequence that includes <it>STAT5A</it>, <it>STAT3</it>, and upstream and downstream sequences of these genes. SNP153137 (G/C) in exon 8 of <it>STAT5A </it>was associated with a significant variability in embryonic survival and fertilization rate compared to all other examined SNPs. Expression analysis revealed that <it>STAT5A </it>is primarily monoallelically expressed in early embryonic stages but biallelically expressed in later fetal stages. Furthermore, the occurrence of monoallelic maternal expression of <it>STAT5A </it>was significantly higher in blastocysts, while paternal expression was more frequent in degenerative embryos.</p> <p>Conclusion</p> <p>Our results imply that <it>STAT5A </it>affects embryonic survival in a manner influenced by developmental stage and allele parent of origin.</p

    Building climate resilience through nature-based solutions in Europe: A review of enabling knowledge, finance and governance frameworks

    Get PDF
    The European Union (EU) has firmly positioned itself as a global leader in promoting and implementing nature-based solutions (NBS). The recently released EU Biodiversity Strategy for 2030, Strategy on Adaptation to Climate Change, and Forest Strategy - all representing key pillars of the ambitious European Green Deal (EGD) - rely on NBS to both preserve and restore ecosystem integrity and increase climate resilience. Although research and policy in Europe have advanced the conceptualization and operationalization of NBS, a much wider adoption is needed to reach the ambitious goals of the EGD and fulfil its vision of transforming into a sustainable, climate-neutral, climate resilient, fair, and prosperous EU by 2050. In this paper, we review recent EU-supported research, policy, and practices to identify critical dimensions that still need to be addressed for greater uptake of NBS. While recognising the multiple societal challenges NBS can target, we build on the key messages from the ‘5th European Climate Change Adaptation conference ECCA 2021′ and focus our analysis on NBS for climate change adaptation and disaster risk reduction. We screen a wide range of NBS cases across the EU and identify-three core challenges to implementation: the lack of a comprehensive evidence base on the effectiveness of NBS to address targeted challenges; the need for a greater involvement of the private sector in financing NBS; and opportunities for enhancing stakeholder engagement in the successful design and implementation of NBS. We take these challenges as the starting point for a broader reflection and critical discussion on the role of i) knowledge, i) finance, including investments in NBS and divestments from nature-negative projects, and iii) governance and policy frameworks to enable the uptake of NBS. We conclude by identifying options for the EU to foster the uptake of NBS in research, policy and practice

    Genotype by environment interaction for 450-day weight of Nelore cattle analyzed by reaction norm models

    Get PDF
    Genotype by environment interactions (GEI) have attracted increasing attention in tropical breeding programs because of the variety of production systems involved. In this work, we assessed GEI in 450-day adjusted weight (W450) Nelore cattle from 366 Brazilian herds by comparing traditional univariate single-environment model analysis (UM) and random regression first order reaction norm models for six environmental variables: standard deviations of herd-year (RRMw) and herd-year-season-management (RRMw-m) groups for mean W450, standard deviations of herd-year (RRMg) and herd-year-season-management (RRMg-m) groups adjusted for 365-450 days weight gain (G450) averages, and two iterative algorithms using herd-year-season-management group solution estimates from a first RRMw-m and RRMg-m analysis (RRMITw-m and RRMITg-m, respectively). The RRM results showed similar tendencies in the variance components and heritability estimates along environmental gradient. Some of the variation among RRM estimates may have been related to the precision of the predictor and to correlations between environmental variables and the likely components of the weight trait. GEI, which was assessed by estimating the genetic correlation surfaces, had values < 0.5 between extreme environments in all models. Regression analyses showed that the correlation between the expected progeny differences for UM and the corresponding differences estimated by RRM was higher in intermediate and favorable environments than in unfavorable environments (p < 0.0001)

    Effects of the number of markers per haplotype and clustering of haplotypes on the accuracy of QTL mapping and prediction of genomic breeding values

    Get PDF
    The aim of this paper was to compare the effect of haplotype definition on the precision of QTL-mapping and on the accuracy of predicted genomic breeding values. In a multiple QTL model using identity-by-descent (IBD) probabilities between haplotypes, various haplotype definitions were tested i.e. including 2, 6, 12 or 20 marker alleles and clustering base haplotypes related with an IBD probability of > 0.55, 0.75 or 0.95. Simulated data contained 1100 animals with known genotypes and phenotypes and 1000 animals with known genotypes and unknown phenotypes. Genomes comprising 3 Morgan were simulated and contained 74 polymorphic QTL and 383 polymorphic SNP markers with an average r2 value of 0.14 between adjacent markers. The total number of haplotypes decreased up to 50% when the window size was increased from two to 20 markers and decreased by at least 50% when haplotypes related with an IBD probability of > 0.55 instead of > 0.95 were clustered. An intermediate window size led to more precise QTL mapping. Window size and clustering had a limited effect on the accuracy of predicted total breeding values, ranging from 0.79 to 0.81. Our conclusion is that different optimal window sizes should be used in QTL-mapping versus genome-wide breeding value prediction

    Gene expression patterns in four brain areas associate with quantitative measure of estrous behavior in dairy cows

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The decline noticed in several fertility traits of dairy cattle over the past few decades is of major concern. Understanding of the genomic factors underlying fertility, which could have potential applications to improve fertility, is very limited. Here, we aimed to identify and study those genes that associated with a key fertility trait namely estrous behavior, among genes expressed in four bovine brain areas (hippocampus, amygdala, dorsal hypothalamus and ventral hypothalamus), either at the start of estrous cycle, or at mid cycle, or regardless of the phase of cycle.</p> <p>Results</p> <p>An average heat score was calculated for each of 28 primiparous cows in which estrous behavior was recorded for at least two consecutive estrous cycles starting from 30 days post-partum. Gene expression was then measured in brain tissue samples collected from these cows, 14 of which were sacrificed at the start of estrus and 14 around mid cycle. For each brain area, gene expression was modeled as a function of the orthogonally transformed average heat score values using a Bayesian hierarchical mixed model. Genes whose expression patterns showed significant linear or quadratic relationships with heat scores were identified. These included genes expected to be related to estrous behavior as they influence states like socio-sexual behavior, anxiety, stress and feeding motivation (<it>OXT, AVP, POMC, MCHR1</it>), but also genes whose association with estrous behavior is novel and warrants further investigation.</p> <p>Conclusions</p> <p>Several genes were identified whose expression levels in the bovine brain associated with the level of expression of estrous behavior. The genes <it>OXT </it>and <it>AVP </it>play major roles in regulating estrous behavior in dairy cows. Genes related to neurotransmission and neuronal plasticity are also involved in estrous regulation, with several genes and processes expressed in mid-cycle probably contributing to proper expression of estrous behavior in the next estrus. Studying these genes and the processes they control improves our understanding of the genomic regulation of estrous behavior expression.</p
    corecore