204 research outputs found
CONTINUITY OF CONDITION SPECTRUM AND ITS LEVEL SET IN BANACH ALGEBRA
For 0 < � < 1 and a Banach algebra element a, this thesis aims to establish
the results related to continuity of condition spectrum and its level set correspondence
at (�; a). Here we propose a method of study to achieve the continuity. We
first identify the Banach algebras at which the interior of the level set of condition
spectrum is empty and then we obtain the continuity results.
This thesis consists of four chapters. Chapter 1 contains all the prerequisites
which are crucial for the development of the thesis. In particular, this chapter
has a quick review of the basic properties of spectrum, condition spectrum, upper
and lower hemicontiuous correspondences. We also concentrate on analytic vector
valued maps and generalized maximum modulus theorem for them.
For an element a in A, Chapter 2 has the results related to interior of the level of
set of the condition spectrum of a. At first, we focus on
Level sets of (p,e-p)outer generalized pseudo spectrum
Let A be a complex Banach algebra with unit e. Let p be a non trivial idempotent element in A and ε>0. For a∈A, it is proved that the interior of the level set of (p,e−p)−ε pseudo spectrum of a is empty in the unbounded component of (p,e−p) resolvent set of a. An example is constructed to show that the condition ‘unbounded component’ can not be dropped. Further, it is proved this ‘unbounded component’ can be dropped in the case when A is B(X) where X is a complex uniformly convex Banach space. That is, if T∈B(X) then interior of the level set of (p,I−p)−ε pseudo spectrum is empty in (p,I−p) resolvent set of T
Level sets of the condition spectrum
For 0 < ε ≤ 1 and an element a of a complex unital Banach algebra A, we prove the following two topological properties about the level sets of the condition spectrum. (1) If ε = 1, then the 1-level set of the condition spectrum of a has an empty interior unless a is a scalar multiple of the unity. (2) If 0 < ε < 1, then the ε-level set of the condition spectrum of a has an empty interior in the unbounded component of the resolvent set of a. Further, we show that, if the Banach space X is complex uniformly convex or if X* is complex uniformly convex, then, for any operator T acting on X, the level set of the ε-condition spectrum of T has an empty interior
On some fixed point theorems in Banach spaces
In this paper, some fixed point theorems are proved for multi-mappings as well as a pair of mappings. These extend certain known results due to Kirk, Browder, Kanna, Ćirić and Rhoades
Software defined networking challenges and future direction: A case study of implementing SDN features on OpenStack private cloud
Cloud computing provides services on demand instantly, such as access to network infrastructure consisting of computing hardware, operating systems, network storage, database and applications. Network usage and demands are growing at a very fast rate and to meet the current requirements, there is a need for automatic infrastructure scaling. Traditional networks are difficult to automate because of the distributed nature of their decision making process for switching or routing which are collocated on the same device. Managing complex environments using traditional networks is time-consuming and expensive, especially in the case of generating virtual machines, migration and network configuration. To mitigate the challenges, network operations require efficient, flexible, agile and scalable software defined networks (SDN). This paper discuss various issues in SDN and suggests how to mitigate the network management related issues. A private cloud prototype test bed was setup to implement the SDN on the OpenStack platform to test and evaluate the various network performances provided by the various configurations
Predicting functional associations from metabolism using bi-partite network algorithms
<p>Abstract</p> <p>Background</p> <p>Metabolic reconstructions contain detailed information about metabolic enzymes and their reactants and products. These networks can be used to infer functional associations between metabolic enzymes. Many methods are based on the number of metabolites shared by two enzymes, or the shortest path between two enzymes. Metabolite sharing can miss associations between non-consecutive enzymes in a serial pathway, and shortest-path algorithms are sensitive to high-degree metabolites such as water and ATP that create connections between enzymes with little functional similarity.</p> <p>Results</p> <p>We present new, fast methods to infer functional associations in metabolic networks. A local method, the degree-corrected Poisson score, is based only on the metabolites shared by two enzymes, but uses the known metabolite degree distribution. A global method, based on graph diffusion kernels, predicts associations between enzymes that do not share metabolites. Both methods are robust to high-degree metabolites. They out-perform previous methods in predicting shared Gene Ontology (GO) annotations and in predicting experimentally observed synthetic lethal genetic interactions. Including cellular compartment information improves GO annotation predictions but degrades synthetic lethal interaction prediction. These new methods perform nearly as well as computationally demanding methods based on flux balance analysis.</p> <p>Conclusions</p> <p>We present fast, accurate methods to predict functional associations from metabolic networks. Biological significance is demonstrated by identifying enzymes whose strong metabolic correlations are missed by conventional annotations in GO, most often enzymes involved in transport vs. synthesis of the same metabolite or other enzyme pairs that share a metabolite but are separated by conventional pathway boundaries. More generally, the methods described here may be valuable for analyzing other types of networks with long-tailed degree distributions and high-degree hubs.</p
Cauchyness and convergence in fuzzy metric spaces
[EN] In this paper we survey some concepts of convergence and Cauchyness appeared separately in the context of fuzzy metric spaces in the sense of George and Veeramani. For each convergence (Cauchyness) concept we find a compatible Cauchyness (convergence) concept. We also study the relationship among them and the relationship with compactness and completeness (defined in a natural sense for each one of the Cauchy concepts). In particular, we prove that compactness implies p-completeness.Almanzor Sapena acknowledges the support of Ministry of Economy and Competitiveness of Spain under grant TEC2013-45492-R.
Valentín Gregori acknowledges the support of Ministry of Economy and Competitiveness of Spain under grant MTM 2012-37894-C02-01.Gregori Gregori, V.; Miñana, J.; Morillas, S.; Sapena Piera, A. (2017). Cauchyness and convergence in fuzzy metric spaces. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 111(1):25-37. https://doi.org/10.1007/s13398-015-0272-0S25371111Alaca, C., Turkoglu, D., Yildiz, C.: Fixed points in intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 29, 1073–1078 (2006)Edalat, A., Heckmann, R.: A computational model for metric spaces. Theor. Comput. Sci. 193, 53–73 (1998)Engelking, R.: General topology. PWN-Polish Sci. Publ, Warsawa (1977)Fang, J.X.: On fixed point theorems in fuzzy metric spaces. Fuzzy Sets Syst. 46(1), 107–113 (1992)George, A., Veeramani, P.: On some results in fuzzy metric spaces. Fuzzy Sets Syst. 64, 395–399 (1994)George, A., Veeramani, P.: Some theorems in fuzzy metric spaces. J. Fuzzy Math. 3, 933–940 (1995)George, A., Veeramani, P.: On some results of analysis for fuzzy metric spaces. Fuzzy Sets Syst. 90, 365–368 (1997)Grabiec, M.: Fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 27, 385–389 (1989)Gregori, V., Romaguera, S.: Some properties of fuzzy metric spaces. Fuzzy Sets Syst. 115, 485–489 (2000)Gregori, V., Romaguera, S.: On completion of fuzzy metric spaces. Fuzzy Sets Syst. 130, 399–404 (2002)Gregori, V., Romaguera, S.: Characterizing completable fuzzy metric spaces. Fuzzy Sets Syst. 144, 411–420 (2004)Gregori, V., López-Crevillén, A., Morillas, S., Sapena, A.: On convergence in fuzzy metric spaces. Topol. Appl. 156, 3002–3006 (2009)Gregori, V., Miñana, J.J.: Some concepts realted to continuity in fuzzy metric spaces. In: Proceedings of the conference in applied topology WiAT’13, pp. 85–91 (2013)Gregori, V., Miñana, J.-J., Sapena, A.: On Banach contraction principles in fuzzy metric spaces (2015, submitted)Gregori, V., Miñana, J.-J.: std-Convergence in fuzzy metric spaces. Fuzzy Sets Syst. 267, 140–143 (2015)Gregori, V., Miñana, J.-J.: Strong convergence in fuzzy metric spaces Filomat (2015, accepted)Gregori, V., Miñana, J.-J., Morillas, S.: Some questions in fuzzy metric spaces. Fuzzy Sets Syst. 204, 71–85 (2012)Gregori, V., Miñana, J.-J., Morillas, S.: A note on convergence in fuzzy metric spaces. Iran. J. Fuzzy Syst. 11(4), 75–85 (2014)Gregori, V., Morillas, S., Sapena, A.: On a class of completable fuzzy metric spaces. Fuzzy Sets Syst. 161, 2193–2205 (2010)Gregori, V., Morillas, S., Sapena, A.: Examples of fuzzy metric spaces and applications. Fuzzy Sets Syst. 170, 95–111 (2011)Kramosil, I., Michalek, J.: Fuzzy metric and statistical metric spaces. Kybernetika 11, 326–334 (1975)Mihet, D.: On fuzzy contractive mappings in fuzzy metric spaces. Fuzzy Sets Syst. 158, 915–921 (2007)Mihet, D.: Fuzzy φ -contractive mappings in non-Archimedean fuzzy metric spaces. Fuzzy Sets Syst. 159, 739–744 (2008)Mihet, D.: A Banach contraction theorem in fuzzy metric spaces. Fuzzy Sets Syst. 144, 431–439 (2004)Mishra, S.N., Sharma, N., Singh, S.L.: Common fixed points of maps on fuzzy metric spaces Internat. J. Math. Math. Sci. 17(2), 253–258 (1994)Morillas, S., Sapena, A.: On Cauchy sequences in fuzzy metric spaces. In: Proceedings of the conference in applied topology (WiAT’13), pp. 101–108 (2013)Ricarte, L.A., Romaguera, S.: A domain-theoretic approach to fuzzy metric spaces. Topol. Appl. 163, 149–159 (2014)Sherwood, H.: On the completion of probabilistic metric spaces. Z.Wahrschein-lichkeitstheorie verw. Geb. 6, 62–64 (1966)Sherwood, H.: Complete Probabilistic Metric Spaces. Z. Wahrschein-lichkeitstheorie verw. Geb. 20, 117–128 (1971)Tirado, P.: On compactness and G-completeness in fuzzy metric spaces. Iran. J. Fuzzy Syst. 9(4), 151–158 (2012)Tirado, P.: Contraction mappings in fuzzy quasi-metric spaces and [0,1]-fuzzy posets. Fixed Point Theory 13(1), 273–283 (2012)Vasuki, R., Veeramani, P.: Fixed point theorems and Cauchy sequences in fuzzy metric spaces. Fuzzy Sets Syst. 135(3), 415–417 (2003)Veeramani, P.: Best approximation in fuzzy metric spaces. J. Fuzzy Math. 9, 75–80 (2001
- …