5 research outputs found

    Grain Surface Models and Data for Astrochemistry

    Get PDF
    AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∼25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions

    The Effect of Carbon Grain Destruction on the Chemical Structure of Protoplanetary Disks

    Get PDF
    The bulk composition of Earth is dramatically carbon-poor compared to that of the interstellar medium, and this phenomenon extends to the asteroid belt. To interpret this carbon deficit problem, the carbonaceous component in grains must have been converted into the gas phase in the inner regions of protoplanetary disks (PPDs) prior to planetary formation. We examine the effect of carbon grain destruction on the chemical structure of disks by calculating the molecular abundances and distributions using a comprehensive chemical reaction network. When carbon grains are destroyed and the elemental abundance of the gas becomes carbon-rich, the abundances of carbon-bearing molecules, such as HCN and carbon-chain molecules, increase dramatically near the midplane, while oxygen-bearing molecules, such as H₂O and CO₂, are depleted. We compare the results of these model calculations with the solid carbon-to-silicon fraction in the solar system. Although we find a carbon depletion gradient, there are some quantitative discrepancies: the model shows a higher value at the position of the asteroid belt and a lower value at the location of Earth. In addition, using the obtained molecular abundance distributions, coupled with line radiative transfer calculations, we make predictions for ALMA to potentially observe the effect of carbon grain destruction in nearby PPDs. The results indicate that HCN, H¹³CN, and c-C₃H₂ may be good tracers
    corecore