477 research outputs found

    A Prognostic Gene Expression Profile That Predicts Circulating Tumor Cell Presence in Breast Cancer Patients

    Get PDF
    The detection of circulating tumor cells (CTCs) in the peripheral blood and microarray gene expression profiling of the primary tumor are two promising new technologies able to provide valuable prognostic data for patients with breast cancer. Meta-analyses of several established prognostic breast cancer gene expression profiles in large patient cohorts have demonstrated that despite sharing few genes, their delineation of patients into “good prognosis” or “poor prognosis” are frequently very highly correlated, and combining prognostic profiles does not increase prognostic power. In the current study, we aimed to develop a novel profile which provided independent prognostic data by building a signature predictive of CTC status rather than outcome. Microarray gene expression data from an initial training cohort of 72 breast cancer patients for which CTC status had been determined in a previous study using a multimarker QPCR-based assay was used to develop a CTC-predictive profile. The generated profile was validated in two independent datasets of 49 and 123 patients and confirmed to be both predictive of CTC status, and independently prognostic. Importantly, the “CTC profile” also provided prognostic information independent of the well-established and powerful ‘70-gene’ prognostic breast cancer signature. This profile therefore has the potential to not only add prognostic information to currently-available microarray tests but in some circumstances even replace blood-based prognostic CTC tests at time of diagnosis for those patients already undergoing testing by multigene assays

    A comparison of univariate and multivariate gene selection techniques for classification of cancer datasets

    Get PDF
    BACKGROUND: Gene selection is an important step when building predictors of disease state based on gene expression data. Gene selection generally improves performance and identifies a relevant subset of genes. Many univariate and multivariate gene selection approaches have been proposed. Frequently the claim is made that genes are co-regulated (due to pathway dependencies) and that multivariate approaches are therefore per definition more desirable than univariate selection approaches. Based on the published performances of all these approaches a fair comparison of the available results can not be made. This mainly stems from two factors. First, the results are often biased, since the validation set is in one way or another involved in training the predictor, resulting in optimistically biased performance estimates. Second, the published results are often based on a small number of relatively simple datasets. Consequently no generally applicable conclusions can be drawn. RESULTS: In this study we adopted an unbiased protocol to perform a fair comparison of frequently used multivariate and univariate gene selection techniques, in combination with a rÀnge of classifiers. Our conclusions are based on seven gene expression datasets, across several cancer types. CONCLUSION: Our experiments illustrate that, contrary to several previous studies, in five of the seven datasets univariate selection approaches yield consistently better results than multivariate approaches. The simplest multivariate selection approach, the Top Scoring method, achieves the best results on the remaining two datasets. We conclude that the correlation structures, if present, are difficult to extract due to the small number of samples, and that consequently, overly-complex gene selection algorithms that attempt to extract these structures are prone to overtraining

    Intratumor Heterogeneity of the Estrogen Receptor and the Long-term Risk of Fatal Breast Cancer.

    Get PDF
    Background:Breast cancer patients with estrogen receptor (ER)-positive disease have a continuous long-term risk for fatal breast cancer, but the biological factors influencing this risk are unknown. We aimed to determine whether high intratumor heterogeneity of ER predicts an increased long-term risk (25 years) of fatal breast cancer. Methods:The STO-3 trial enrolled 1780 postmenopausal lymph node-negative breast cancer patients randomly assigned to receive adjuvant tamoxifen vs not. The fraction of cancer cells for each ER intensity level was scored by breast cancer pathologists, and intratumor heterogeneity of ER was calculated using Rao's quadratic entropy and categorized into high and low heterogeneity using a predefined cutoff at the second tertile (67%). Long-term breast cancer-specific survival analyses by intra-tumor heterogeneity of ER were performed using Kaplan-Meier and multivariable Cox proportional hazard modeling adjusting for patient and tumor characteristics. Results:A statistically significant difference in long-term survival by high vs low intratumor heterogeneity of ER was seen for all ER-positive patients (P < .001) and for patients with luminal A subtype tumors (P = .01). In multivariable analyses, patients with high intratumor heterogeneity of ER had a twofold increased long-term risk as compared with patients with low intratumor heterogeneity (ER-positive: hazard ratio [HR] = 1.98, 95% confidence interval [CI] = 1.31 to 3.00; luminal A subtype tumors: HR = 2.43, 95% CI = 1.18 to 4.99). Conclusions:Patients with high intratumor heterogeneity of ER had an increased long-term risk of fatal breast cancer. Interestingly, a similar long-term risk increase was seen in patients with luminal A subtype tumors. Our findings suggest that intratumor heterogeneity of ER is an independent long-term prognosticator with potential to change clinical management, especially for patients with luminal A tumors

    Expression profiling predicts outcome in breast cancer

    Get PDF
    Gruvberger et al. postulate, in their commentary [1] published in this issue of Breast Cancer Research, that our “prognostic gene set may not be broadly applicable to other breast tumor cohorts”, and they suggest that “it may be important to define prognostic expression profiles separately in estrogen receptor (ER) positive and negative tumors”. This is based on two observations derived from our gene expression profiling data in breast cancer [2]: the overlap between reporter genes for prognosis and ER status, and Gruvberger et al.’s inability to confirm the prognosis prediction using a nonoptimal selection of 58 of our 231 prognosis reporter genes. The overlap between our prognosis reporter genes and the ER status genes is certainly very large, mainly because ~10 % of all genes on our microarray contain informatio

    Validity of absolute intake and nutrient density of protein, potassium, and sodium assessed by various dietary assessment methods:An exploratory study

    Get PDF
    It is suggested that nutrient densities are less affected by measurement errors than absolute intake estimates of dietary exposure. We compared the validity of absolute intakes and densities of protein (kJ from protein/total energy (kJ)), potassium, and sodium (potassium or sodium (in mg)/total energy (kJ)) assessed by different dietary assessment methods. For 69 Dutch subjects, two duplicate portions (DPs), five to fifteen 24-h dietary recalls (24 hRs, telephone-based and web-based) and two food frequency questionnaires (FFQs) were collected and compared to duplicate urinary biomarkers and one or two doubly labelled water measurements. Multivariate measurement error models were used to estimate validity coefficients (VCs) and attenuation factors (AFs). This research showed that group bias diminished for protein and sodium densities assessed by all methods as compared to the respective absolute intakes, but not for those of potassium. However, the VCs and AFs for the nutrient densities did not improve compared to absolute intakes for all four methods; except for the AF of sodium density (0.71) or the FFQ which was better than that of the absolute sodium intake (0.51). Thus, using nutrient densities rather than absolute intakes does not necessarily improve the performance of the DP, FFQ, or 24 hR.</p

    Discordant assessment of tumor biomarkers by histopathological and molecular assays in the EORTC randomized controlled 10041/BIG 03-04 MINDACT trial breast cancer

    Get PDF
    Accurate identification of breast cancer patients most likely to benefit from adjuvant systemic therapies is crucial. Better understanding of differences between methods can lead to an improved ER, PgR, and HER-2 assessment. The purpose of this preplanned translational research is to investigate the correlation of central IHC/FISH assessments with microarray mRNA readouts of ER, PgR, and HER-2 status in the MINDACT trial and to determine if any discordance could be attributed to intratumoral heterogeneity or the DCIS and normal tissue components in the specimens. MINDACT is an international, prospective, randomized, phase III trial investigating the clinical utility of MammaPrint in selecting patients with early breast cancer for adjuvant chemotherapy (n = 6694 patients). Gene-expression data were obtained by TargetPrint; IHC and/or FISH were assessed centrally (n = 5788; 86 %). Macroscopic and microscopic evaluation of centrally submitted FFPE blocks identified 1427 cases for which the very same sample was submitted for gene-expression analysis. TargetPrint ER had a positive agreement of 98 %, and a negative agreement of 95 % with central pathology. Corresponding figures for PgR were 85 and 94 % and for HER-2 72 and 99 %. Agreement of mRNA versus central protein was not different when the same or a different portion of the tumor tissue was analyzed or when DCIS and/or normal tissue was included in the sample subjected to mRNA assays. This is the first large analysis to assess the discordance rate between protein and mRNA analysis of breast cancer markers, and to look into intratumoral heterogeneity, DCIS, or normal tissue components as a potential cause of discordance. The observed difference between mRNA and protein assessment for PgR and HER-2 needs further research; the present analysis does not support intratumoral heterogeneity or the DCIS and normal tissue components being likely causes of the discordance.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Robust interlaboratory reproducibility of a gene expression signature measurement consistent with the needs of a new generation of diagnostic tools

    Get PDF
    The increasing use of DNA microarrays in biomedical research, toxicogenomics, pharmaceutical development, and diagnostics has focused attention on the reproducibility and reliability of microarray measurements. While the reproducibility of microarray gene expression measurements has been the subject of several recent reports, there is still a need for systematic investigation into what factors most contribute to variability of measured expression levels observed among different laboratories and different experimenters.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Mutual facilitation between foundation species Mytilus edulis and Lanice conchilega promotes habitat heterogeneity on tidal flats

    Get PDF
    Foundation species that modify their habitat can facilitate other species, including other foundation species. Most studies focus solely on a single foundation species, overlooking such facilitation cascades. In this study, we investigated the interactions between the two coastal foundation species Mytilus edulis (blue mussel) and Lanice conchilega (sand mason worm). We investigated whether these species engage in facilitative interactions or if their association simply reflects a shared ecological niche on the soft-sediment intertidal flats of the Dutch Wadden Sea. To do so, we performed species distribution modeling, manipulative field experiments, and field surveys. We found a positive association between both foundation species, with a 2.45 times higher occurrence of both species compared to a random distribution. In addition, these species partially occupied the same ecological niche. We demonstrated that L. conchilega provided settlement substrate for M. edulis spat, increasing densities by 400 times compared to bare plots. Furthermore, M. edulis reefs facilitated L. conchilega occurrence in the wake of the reef. Biogenic reef development revealed that this interspecific facilitation resulted in spatial habitat heterogeneity. Therefore, we conclude that interspecific facilitation can significantly enhance the occurrence of these two important intertidal foundation species. Acknowledgment of such complex facilitation interactions has an untapped potential for improving the success of restoration and conservation programs.</p
    • 

    corecore