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Foundation species that modify their habitat can facilitate other species, including

other foundation species. Most studies focus solely on a single foundation species,

overlooking such facilitation cascades. In this study, we investigated the interactions

between the two coastal foundation speciesMytilus edulis (blue mussel) and Lanice

conchilega (sand mason worm). We investigated whether these species engage in

facilitative interactions or if their association simply reflects a shared ecological niche

on the soft-sediment intertidal flats of the Dutch Wadden Sea. To do so, we

performed species distribution modeling, manipulative field experiments, and field

surveys. We found a positive association between both foundation species, with a

2.45 times higher occurrence of both species compared to a random distribution. In

addition, these species partially occupied the same ecological niche. We

demonstrated that L. conchilega provided settlement substrate for M. edulis spat,

increasing densities by 400 times compared to bare plots. Furthermore, M. edulis

reefs facilitated L. conchilega occurrence in the wake of the reef. Biogenic reef

development revealed that this interspecific facilitation resulted in spatial habitat

heterogeneity. Therefore, we conclude that interspecific facilitation can significantly

enhance the occurrence of these two important intertidal foundation species.

Acknowledgment of such complex facilitation interactions has an untapped

potential for improving the success of restoration and conservation programs.
KEYWORDS

facilitation, Lanice conchilega, Mytilus edulis, sand mason worm, mussel, foundation
species, ecosystem engineers, tidal flats
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GRAPHICAL ABSTRACT
1 Introduction

Positive interactions between species are important drivers for

species distribution and survival in many ecosystems worldwide

(Bertness and Callaway, 1994). Mutualisms, for example, refer to a

relationship where both species involved obtain a benefit, often

through a tightly evolved and obligate connection. Commensalisms,

on the other hand, describe a scenario where one species benefits

without affecting the other. One-way facilitation refers to a situation

where one species creates favorable conditions for another species.

Last, reciprocal facilitation is a type of relationship where both

species promote conditions that are favorable for each other

(Bronstein, 2009, 2015). Some of the numerous examples of

positive interactions in the marine realm are between coral polyps

and their symbiotic algae (mutualism), epizoic barnacles and their

sea turtle hosts (commensalism), or mangroves providing nursery

habitats for a diverse assemblage of fishes (facilitation)

(Nagelkerken et al., 2000; Stachowicz, 2001; Zardus, 2021).

Foundation species, species that dominate in abundance and

biomass within a system and modify the physical environment, are

known for their role in facilitating the survival or growth of other

species by creating new habitats (Dayton, 1972; Bruno et al., 2003).

The biogenic structures of foundation species can change the

physical environment by e.g., reducing physical stress and/or

providing complex structure. Other organisms can find refuge

from predation and competition within this structure (Dayton,

1972; Jones et al., 1994). Foundation species can support many

ecosystem functions and services, such as providing benefits for

biodiversity, coastal defense, carbon storage, fisheries, nutrient

cycling, and primary and secondary production (Costanza et al.,

1998; Temmerman et al., 2013; Alongi, 2018). Kelp, corals, and

mangroves are examples of marine foundation species that provide

these important ecosystem services by adding structural complexity

to the ecosystem (Kovalenko et al., 2012).

The role of single-foundation species facilitating entire

communities and food webs through habitat creation has been
Frontiers in Marine Science 02
extensively documented (Dayton, 1972; Bertness and Callaway,

1994). However, one foundation species can also facilitate another

foundation species resulting in facilitation cascades (Altieri et al., 2007).

Evidence is growing that ecosystems worldwide are structured by

multiple foundation species that act within and among species and

across different scales (Angelini et al., 2011; van de Koppel et al., 2015).

Multiple foundation species can coexist in different assemblages: nested

or adjacent (Angelini et al., 2011). In nested assemblages, the first

foundation species inhabits a habitat and facilitates the colonization of a

second foundation species by providing settlement substrate or shelter

against biotic and abiotic stressors, such as cordgrass facilitating ribbed

mussels (Altieri et al., 2007) or oysters attached to mangrove roots

(Angelini and Silliman, 2014). In adjacent assemblages, foundation

species change the environmental conditions to favorable conditions for

others in an adjacent zone such as the interaction between corals,

seagrasses, and mangroves (Gillis et al., 2017) or intertidal mussel beds

facilitating nearby cockle beds (Donadi et al., 2013).

When facilitation is incorporated into the niche concept, it can

expand the niche in a larger spatial range than predicted by the

fundamental niche (Bruno et al., 2003; Chase and Leibold, 2011).

For example, the realized niche of a species can be larger than the

fundamental niche by increased resource availability, predation

refuge, recruitment enhancement, and amelioration of physical

stress (Bruno et al., 2003). These facilitative interactions can take

place on both local and landscape scales (Bruno et al., 2003; Donadi

et al., 2013; van de Koppel et al., 2015; Wang et al., 2022). Species

rely more on positive interactions on the edges of their fundamental

niche, where environmental factors determining species

distribution are less optimal and more stressful for one or both

species (Bruno et al., 2003). In these stressful environments,

facilitation between species may be more important than

competition because of stress amelioration, described as the

stress-gradient hypothesis (Callaway, 2007).

Tidal flats, soft-sediment ecosystems bordering land and sea

and regulated by the rhythm of the tides, are examples of

ecosystems that are organized by high physical (wave action) and
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chemical (sulfides, anoxia, salinity) stresses (van Straaten, 1954;

Gao, 2019). On tidal flats, emergent structures in the otherwise

predominantly flat landscape contribute to the habitat complexity

(Callaway, 2018; Nauta et al., 2023). Hence, organisms that form

biogenic reefs, including oyster reefs, mussel beds, and reef-building

polychaetes facilitate many other species by providing habitat

complexity (De Smet et al., 2015; Christianen et al., 2017; van der

Ouderaa et al., 2021). Under these challenging physical conditions,

interspecific facilitation might be pivotal in community structure

and ecosystem multifunctionality, such as regulating biological,

geochemical, and physical processes of tidal flats (Angelini et al.,

2011; Manning et al., 2018). For example, enhanced biodiversity

and ecosystem multifunctionality, including decomposition,

primary production, sediment accretion, and water infiltration

rates, emerge exclusively where two or more foundation species

overlap as seen with ribbed mussels aggregating around cordgrass

stems (Angelini et al., 2015).

Two reef-building foundation species that can co-occur on tidal

flats are the blue mussel,Mytilus edulis, and the sand mason worm,

Lanice conchilega (Pallas 1766) (Hertweck, 1995). M. edulis is a

foundation species that facilitates itself and other species in the

surrounding tidal flat by decreasing near-bed hydrodynamic stress,

increasing sediment stabilization, and increasing organic matter

content through the production and deposition of pseudofeces

(Graf and Rosenberg, 1997; Widdows et al., 1998; Gutiérrez et al.,

2003; van der Zee et al., 2012). L. conchilega is a 10-20 cm long

polychaete worm that builds tubes by cementing shell fragments

and sand grains into a strong mucus layer. These tubes attenuate

water flow velocity and change water flow direction, increasing

sediment stabilization and sedimentation (Friedrichs et al., 2000;

Borsje et al., 2014; Alves et al., 2017). Both foundation species

facilitate a diverse assemblage of macroalgae, macrozoobenthos,

fish, and birds (Albrecht and Reise, 1994; Van der Wal et al., 2014;

De Smet et al., 2015; Christianen et al., 2017). Moreover, foundation

species such as M. edulis and L. conchilega can contribute to the

resilience of tidal flats as this process hinges on sediment budgets

and accretion, especially in the face of rising sea levels (Huismans

et al., 2022).

In this study, we investigated the interaction between M. edulis

and L. conchilega and explored their general ecological niche on the

tidal flats of the Dutch Wadden Sea. Specifically, we 1) examined

species occurrence in a large-scale gridded sampling design (~4,500

samples per year) across the Dutch Wadden Sea, 2) explored the

ecological niche of both species to examine their shared niche,

3) experimentally tested how L. conchilega tubes acted as settlement

substrate for M. edulis, thereby facilitating nested assemblages,

4) observed whether M. edulis reefs enhanced the occurrence of

L. conchilega in the adjacent hydrodynamic wake zone, 5)

monitored the respective spatiotemporal biogenic reef

development of both foundation species. In addition, we

measured the effect of these two foundation species on the

sediment properties to understand the mechanisms of facilitation.

That is, we used sediment properties as proxies for hydrodynamic

forces, where small grain sizes and high silt percentages are

attributed to reduced hydrodynamic forces (Le Hir et al., 2000).

We selected M. edulis and L. conchilega as study species because
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both species provide observable emergent structures to the soft-

sediment tidal flats (Widdows et al., 1998; Alves et al., 2017).

Furthermore, M. edulis historically served as the primary reef-

building species before the establishment of the Pacific oyster,

Magallana gigas (Markert et al., 2010; Markert, 2020). Studying

these interactions in contemporary times holds significance as

pressures on tidal flats, including the Wadden Sea, increase due

to climate change factors such as rising temperatures, sea level

fluctuations, erosion, sedimentation, and intensified extreme

weather events.
2 Methods

2.1 Field sites

The fieldwork was conducted in the Wadden Sea, the world’s

largest system of tidal flats, gullies, and barrier islands. Its total tidal

areas cover nearly 10,000 square kilometers along the coast of the

Netherlands, Germany, and Denmark (Reise, 2005) with around

1,000 km2 of soft-sediment intertidal flats at mean low water and a

total surface area of around 2,500 km2 at mean high water in the

Dutch part of the Wadden Sea (Elias et al., 2012). The Wadden Sea

is classified as a UNESCO World Heritage site (Unesco, 2014) and

is protected as a Natura 2000 area under the European Bird- and

Habitat directives, because of its high productivity and supports

large numbers of invertebrates, fish, and birds with many long-

distance migrants (van de Kam et al., 2004; van der Veer et al.,

2015). Around 1990, the Dutch Wadden Sea experienced a drastic

loss of nearly all (~4000 ha) intertidal mussel beds, primarily

attributed to overfishing, storms, and recruitment failures

(Dankers et al., 2001; Christianen et al., 2017). In 1991, the first

Pacific oyster that attaches to mussel beds was observed outside

cultivation plots (Reise, 1998). Consequently, mussels located

within the interspace of oyster reefs exhibited reduced growth

rates and body conditions due to interspecific competition

(Dankers et al., 2001; Folmer et al., 2017). Moreover, climate

change has impacted the Dutch Wadden Sea, leading to a

temperature increase of 2.3°C over the last ~120 years, a decline

in wind speed averaging -2% per decade, an increase in heavy

rainfall events subsequently influencing sediment transport, and

occurrence of extreme droughts in the years 2018, 2019 and 2020

(Hoekstra and Philippart, 2022).
2.2 Ecological niche modeling

2.2.1 Synoptic Intertidal Benthic Survey
We used the macrozoobenthos samples of the Synoptic

Intertidal Benthic Survey (SIBES; (Bijleveld et al., 2012; Compton

et al., 2013) to relate the abundance and biomass ofM. edulis and L.

conchilega to environmental predictors at the landscape scale. In the

years 2008-2020, this large-scale gridded sampling design was

sampled (~4,500 samples per year, in total 42,409 samples) with

500 m intervals and additional random points (Bijleveld et al., 2012)

across all intertidal mudflats of the Dutch Wadden Sea (Figure 1).
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Sample sites were accessed by foot or boat and sampled with one

(diameter 0.15 m, 0.0177 m2) or two cores (diameter 0.10 m,

combined 0.0173 m2), respectively, to a depth of ~25 cm. At each

sample site, densities and biomass of all macrozoobenthos and

sediment characteristics were measured. All macrozoobenthos

samples were sieved on a 1 mm round mesh and preserved in a

4% formaldehyde solution with rose Bengal dye (C.A.S. no. 632-68-

8) for identification in the laboratory (Compton et al., 2013). All

organisms were identified to the lowest taxonomic level possible.

For this study, we only used the densities of M. edulis and L.

conchilega. Sediment samples were collected and analyzed following

the organic matter content, median grain size D50 (mm), and silt %

<63 µm sampling procedures described in section 2.2.2.

2.2.2 Sediment properties sampling procedures
We collected the top-1 and top-5 cm of the sediment surface

with a small core (Ø 3 cm, 50 ml syringe) to determine the sediment

properties: organic matter content, median grain size D50 (mm),

and silt % <63 mm. Following sampling, the sediment samples were

kept frozen. For calculation of organic matter content, the sediment

samples were dried for 24 hours at 60°C and incinerated for 4 hours

at 550°C to determine Ash Free Dry Weight (AFDW) and calculate

weight loss on ignition (LOI wt%). Sediment samples were freeze-

dried for 48 hours at -56°C, sieved over 1-mm mesh, and analyzed

with the Malvern Mastersizer 2000 (Malvern Instruments,

Worcestershire, United Kingdom, serial number 34403/139,

model APA 2000 with Hydro G 2000 introduction unit and

Autosampler 2000) to determine median grain size and silt%.

2.2.3 Environmental predictors for
niche modeling

To construct the ecological niche ofM. edulis and L. conchilega,

we used the environmental parameters tidal emergence time in

percentage, flow rate in m/s, shear stress in Pascal, salinity in parts

per trillion, orbital velocity in m/s, median grain size (D50) in µm,

and silt percentage in percentage <64 µm. Tidal emergence time,

flow rate, and shear stress were predicted by Van Weerdenburg and
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Vroom (2021) according to the Dutch Wadden Sea Model

(DWSM) in Delft3D-Flexible Mesh in the 2D version of the

model with a horizontal resolution of 100x100 meter in the

period between 23 June till 22 July 2017 (Van Weerdenburg and

Vroom, 2021). This period represented the period from 2013 to

2017 because of similar average high-, and low-water levels (Van

Weerdenburg and Vroom, 2021). Salinity was simulated by Van

Weerdenburg and Vroom (2021) according to the 3D version of the

DWSMwith a horizontal resolution of 200x200 m for the year 2017.

Orbital velocity was predicted by Van Weerdenburg and Vroom

(2021) according to the SWAN-Kuststrook wave model with March

2020 as representative of the average annual wave conditions with a

resolution of ~300 meters. Consequently, the root mean square of

the amplitude of the predicted orbital movement within a certain

time period was interpolated to a 100x100 meter grid (Van

Weerdenburg and Vroom, 2021). In addition, sediment samples

from the SIBES campaign were used and transformed into raster

layers (grid cells 500x500m) for median grain size (D50), and silt

percentage. If two samples were present within one grid cell (this

was possible because of the random points), the mean of both

samples was used. The DWSMmay be too coarse to show the effects

of biogenic reefs on the environment. On the other hand, sediment

samples do reflect the effects of biogenic reefs on the surrounding

tidal flat (lower grain size and higher silt percentage) (Widdows

et al., 1998; Alves et al., 2017).
2.2.4 MaxEnt species distribution models
First, we studied the relation between M. edulis and L.

conchilega occurrence in all sample locations of the SIBES data

set by applying a Chi-square goodness of fit test (N=42409) to test

for independence i.e., co-occurrence by chance. Second, the realized

niche concerning the environmental predictors of M. edulis and L.

conchilega was determined by fitting MaxEnt species distribution

models (Research Resource Identifiers, RRID: SCR_021830). We

used presence/background modeling; MaxEnt because it allows for

complex, nonlinear responses between species presence and

environmental parameters (Merow et al., 2013). To analyze the

ecological niche of the species, we decided to use MaxEnt species

distribution models (presence/background modeling) and not GLM

(presence/absence modeling). The use of GLM is advised when

absence data is available (Guillera-Arroita et al., 2014). However,

the sampled surface of macrozoobenthos (0.0177 m2) was very

small compared to the scale of the grid (500x500m). Foundation

species might be absent in the sample but present in the nearby

surroundings of the sampling point. Especially since our target

species are both species that grow in patchy distributions with high

variability from high densities to bare patches (Bertness and

Grosholz, 1985; Callaway et al., 2010), sample points with absence

data may be located in a suitable environment and not true absence

samples (Degraer et al., 2008). Therefore, we choose to use

presence/background modeling instead of presence/absence

modeling. MaxEnt combined species presence data alongside

randomly selected background locations, where species presence

or absence could occur. The model then correlated this information

with feature types: environmental parameters such as tidal
FIGURE 1

Overview of sampling locations in the Dutch Wadden Sea: Synoptic
Intertidal Benthic Survey (SIBES) grid (pink), field survey at Texel
(light green; T), field survey at Griend (light green; G) and
experimental set-up at Schiermonnikoog (light green; S).
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emergence time, flow rate, shear stress, salinity, orbital velocity,

median grain size (D50), and silt percentage to compute a relative

occurrence rate (ROR). Consequently, the probability of species

presence was calculated by applying a logistic output to the ROR

(Merow et al., 2013). Presence data was obtained from the SIBES

data and summarized in a grid (grid cells 500x500m). Species were

labeled as present when observed in more than 2 out of the 13 years

within one grid cell. Background locations were randomly created

with a minimum distance of 2.27 km to correct for spatial

autocorrelation and with a total number of >5 times the species’

presence sampling points within the intertidal area of the Dutch

Wadden Sea (r-package: “sf”). The minimum distance between the

background locations was calculated based on variograms (r-

package: “gstats”) to prevent spatial autocorrelation, the

likelihood that two locations are similar because of the distance

between them. Variograms were calculated and the correlation

between the sample locations was plotted as a function of their

distance from each other. Consequently, we could determine the

minimum distance in which the two locations were not spatial auto-

correlated. Last, we derived the MaxEnt predicted presence

probability maps of both species and averaged these two maps

per grid cell, providing a probability of the overlapping or shared

ecological niche between L. conchilega and M. edulis.
2.3 Mytilus edulis establishment by Lanice
conchilega: experimental tube removal

To test for the effect of L. conchilega tubes on mussel settlement,

we performed a manipulative field experiment on an intertidal flat

south of the island Schiermonnikoog (53°27’22.0”N, 6°9’30.2 “E)

from August 2020 until March 2022 (Figure 1 and Appendix S1A).

This tidal flat was characterized by bare sandy sediment and a tidal

emergence time of approximately 30% per day. L. conchilega was

present in medium-dense aggregations (~800 individual m-2), and

at ~200-meter distance patches of mussels and oysters were

observed. Within the L. conchilega aggregations, we created a

randomized block design with two treatments in 3x3 m plots:

‘tubes present’ and ‘tubes removal’ (n=6). The plots were

orientated in blocks of two, with four meters in between the plots

and eight meters in between each block. No manipulation of the

treatment ‘tubes present’ was necessary since the tubes were

naturally present. A sled with a blade was pulled over the

sediment surface (top 1 cm) to remove all tubes and associated

fauna for the ‘tubes removal’ treatment. To reduce the modification

of the sediment properties, we installed a sieve (Ø 1 mm) behind the

blade that redeposited the sediment after cutting the tubes. After

tube removal, we suffocated all fauna by digging in agricultural

plastic sheets made from low-density polyethylene. After six days,

we removed the plastic and removed all dead organic tissue on the

sediment surface. Since it was impossible to selectively remove L.

conchilega only, we had to remove all benthic fauna to prevent

immediate new tube build-up. Subsequently, we performed

measurements in August, October, and December 2020, June and

September 2021 and March 2022. During the sampling rounds, we
Frontiers in Marine Science 05
counted L. conchilega tubes with visible fringes and M. edulis

abundance four times in the center of each plot with 20x20 cm

frames. M. edulis was classified as a larva when its length measured

less than one centimeter. We counted tubes with visible fringes

because this indicates occupation by the worm itself (van Hoey

et al., 2006). The fringes of the tubes are in general destroyed shortly

after the worm abandons the tube or dies (van Hoey et al., 2006). In

addition, we analyzed sediment properties according to the

procedures described in section 2.2.2.
2.4 Facilitation of Lanice conchilega in the
wake of bivalve reefs: field survey

To measure the facilitation of L. conchilega abundance in the

adjacent habitat zones of mixed mussel/oyster reefs (M. edulismixed

withMagallana gigas), we conducted surveys along six transects with

two distinct characteristics: covering a mussel/oyster reef and a bare

control at the north-east of the island Texel (53°8’41.5”N, 4°

54’18.7”E), in August 2019, March 2020 and August 2020 (Figure 1

and Appendix S1A). The control site was chosen to be as near to the

reef as possible and selected based on a similar habitat type: elevation

measured with Real Time Kinematics dGPS (Trimble R8, GNSS

system; –36 - –40 cm N.A.P. at 50 m distance from the reef), distance

to the gully (~ 50 m during low tide), sediment type (sandy without

dead shells). Hence, the distance between the reef and control sites

was ~1500 m at Texel. The distance between the transects within one

treatment and sample points was 50 meters, measured from the

center of the reef (0 m distance from the reef, Appendix S1B). The

sampling station –50 was positioned 50 meters from the

hydrodynamically exposed edge of the reef. The sampling stations

50, 100, 150, and 200 meters were located in the wake of the reef. The

sample points were positioned perpendicular to the incoming tide

(Appendix S1B). At each sampling point, we counted L. conchilega

tubes with visible fringes four times in 20x20 cm frames and

estimated mussel/oyster reef cover in 50x50 cm frames (Van Hoey

et al., 2008). In addition, we analyzed sediment properties according

to procedures described earlier in section 2.2.2 Sediment properties

sampling procedures and measured elevation with RTK dGPS.

Furthermore, we compared the stable mixed mussel/oyster reef at

Texel with a young mussel bed at the south of the island Griend (53°

14’20.6”N, 5°15’31.6”E). This mussel bed disappeared within one year

after the start of the monitoring. The survey set-up replicated that of

Texel, with the exception that at Griend the distance between the reef

and nearby control was ~300 m. This adjustment aimed to maintain

constant environmental parameters including elevation and

sediment type.
2.5 Interspecific facilitation over time:
field survey

To monitor the establishment of a mussel bed on L. conchilega

aggregations on a temporal scale, we surveyed reef development

south-east of the island Griend (53°14’34.6”N, 5°18’6.5”E; Figure 1
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and Appendix S1C). In August 2019, we measured the contours of

dense L. conchilega aggregations with handheld GPS (Garmin

GPSMap 66 Series). In April 2021, this reef was displaced by a

young mussel bed. We measured the contours of this reef with drone

imagery (DJI Mavic Pro 2) and handheld GPS and determined

contours in qGIS (3.6.3-Noosa). In addition, we surveyed transects

(n=9) that covered the young mussel bed and adjacent bare tidal flats

in April and August 2021 (Appendix S1C). On these transects, we 1)

counted L. conchilega tubes with intact fringes in 50x50 cm frames,

and 2) measured elevation with RTK dGPS (Trimble R8, GNSS

system) through sampling points (every 5 m).
2.6 Statistical analyses

We performed all statistical analyses in R (R Core Team, 2022).

We validated model assumptions by 1) residuals versus fitted value

plots to verify homogeneity of variances, 2) QQ-plots of the

residuals to test for normality and 3) residuals versus each

explanatory variable to check for independence. In addition,

Shapiro-Wilks’s test (p > 0.05) and Bartlett’s test (p > 0.05) were

used to test for normality and homogeneity of variance of the

residuals, respectively.

For the removal experiment on Schiermonnikoog,M. edulis and

L. conchilega tube counts were analyzed using generalized linear

mixed models (GLMM) assuming a negative binomial, zero-inflated

error distribution (absence was affected by the removal treatment; r-

package: ‘glmmTMB’ (Brooks et al., 2017). The zero-inflation

model (ZI) estimates the probability of an extra zero such that a

positive estimate value indicates a higher chance of absence (e.g. ZI:

tubes removal >0 means more absence). This is the opposite of the

negative binomial model (NB) where a positive contrast indicates a

higher abundance (e.g., NB: tubes removal >0 means higher

abundances in this treatment) (Brooks et al., 2017). The sampling

date and plot nested in blocks were included as random effects. For

the transects on Texel, we summarized the counts of four pseudo-

replicate L. conchilega tube counts per sampling station and

analyzed these numbers by generalized linear models (GLM) with

negative binomial distribution (glm.nb function from the R package

MASS (Venables and Ripley, 2002). Tukey’s post-hoc comparisons

were used to test for significant differences (p < 0.05) between

treatments within distance from the reef (R package ‘emmeans’;

(Lenth, 2019). Sampling dates (August 2019, March 2020, and

August 2020) were used as replicates since there was no variation

in means among the sampling time points. To test for differences

between the treatments within distance from the reef, sediment D50

and silt percentage were analyzed with GLM with a negative

binomial distribution, organic matter content was log-

transformed and analyzed with linear models, and Tukey’s post-

hoc comparisons were applied. To monitor biogenic reef

development, we spatially visualized L. conchilega tube counts by

ordinary kriging r-package: ‘automap’; Hiemstra, 2022). The

function ‘autoKrige’ fits a variogram model to the given data set

and returns the results of the interpolation: prediction, variance,

and standard deviation. Consequently, the interpolated prediction

was used to visualize L. conchilega tube counts.
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3 Results

3.1 Relating the ecological niches of
Mytilus edulis and Lanice conchilega

To investigate the interlinkage between M. edulis and L.

conchilega, we examined the occurrence frequency of both species

at individual sample locations within the SIBES dataset. We found

that both foundation species were positively associated with each

other because the observed value of sample locations with the

presence of both M. edulis and L. conchilega was 2.45 times

higher than the expected value (X2(1, N=42409) = 831.45, p <

0.001, Figure 2 and Appendix S2). In addition, MaxEnt species

distribution modeling revealed that 125 km2 and 81 km2 of the total

intertidal area of the Dutch Wadden Sea was highly suitable

(occurrence probability of > 0.6) for M. edulis and L. conchilega,

respectively (Figure 3). Only 37 km2 of the ecological niches

between both foundation species overlapped (Figure 3), which

means that they share 30% and 46% of their niche with the other

foundation species for M. edulis and L. conchilega respectively. The

highly suitable areas for M. edulis were positioned closer to the

mainland (training data AUC = 0.705), while these areas for L.

conchilega are found closer to the barrier islands and tidal inlets

(training data AUC = 0.734) (Figure 3).
3.1 Lanice conchilega provides settlement
substrate for Mytilus edulis:
nested assemblage

To investigate the role of L. conchilega tubes as settlement

substrate for M. edulis spat within nested assemblages, we

experimentally removed L. conchilega tubes and measured the
FIGURE 2

Correlation matrix of the presence of both Lanice conchilega and
Mytilus edulis in the sampling stations (n=42409) of the Synoptic
Intertidal Benthic Survey (SIBES) in the Dutch Wadden Sea. Positive
Pearson residuals indicate a positive associated between both
foundation species.
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effect onM. edulis. High L. conchilega tube densities of 1542±160 m-2

(mean±SE) facilitated the settlement of M. edulis larvae (length: ~ 1

cm) (Figure 4A).M. edulis counts were 400 times higher in the ‘tubes

present’ treatment compared to the ‘tubes removal’ treatment with

177±36 individual tube counts (mean±SE) (Figure 4B and Table 1).

This facilitation within nested assemblage was visible until the end of

the experiment in April 2022, almost one year after the firstM. edulis

settlement. Sediment properties did not differ between treatments,
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indicating that there was no significant attenuation of

hydrodynamics by L. conchilega tubes (Appendix S3).
3.2 Facilitation of Lanice conchilega
in the wake of bivalve reefs:
adjacent assemblage

To explore the facilitation of L. conchilega by mixed mussel/

oyster reefs (M. edulis mixed with M. gigas), we surveyed L.

conchilega tube densities and reef cover. No tubes 0±0 (mean±SE)

were counted at sampling stations -50 m and 0 m mussel bed. The

highest tube densities of 1606±122 m-2 (mean±SE) were found at 50

meters in the wake of the reef, and the lowest tube densities of 128±38

m-2 (mean±SE) were found at 200 m in the wake of the reef. The tube

counts were on average 24 and 22 times higher at 50 (b = 3.17, SE ±

0.66, p < 0.001) and 150 m distances (b = 3.08, SE ± 0.67, p < 0.001),

respectively, in the wake of the reef compared to the nearby control

(Figure 5 and Table 1). The mussel/oyster reef area extent covered the

sampling stations -50 and 0 m with an average reef cover of 45% at

sampling station -50 and 75% at sampling station 0 (Figure 5A). At

50 meters in the wake of the reef, sediment silt percentage was higher

(+17% silt), median grain size was lower (D50: –32 mm) and organic

matter content was higher (+1% LOI) compared to the nearby

control (Figure 5B and Appendix S4). The sediment surface around

the reef center was elevated by ~ 0.35 meters (0 meters; Figure 5C).

To compare these counts with a young mussel bed located south of

the island Griend that disappeared within one year after the start of

the monitoring, we observed the highest L. conchilega tube densities

3956±631 m-2 at 50 meters in the wake of the reef compared to the

control with 171±106 tubes m-2. One year later, however, this mussel

bed had disappeared, and L. conchilega tube densities were reduced to

almost zero counts (Appendices S1, S5).
3.3 Interspecific facilitation creates
dynamic habitat heterogeneity

To study the interlinkage between M. edulis and L. conchilega,

we monitored biogenic reef development (Figure 6). In 2019, the
A B

FIGURE 4

The development of (A) Lanice conchilega and (B) Mytilus edulis abundance after macrozoobenthos removal (i.e., aboveground tubes removal) in
September 2020 showed enhanced establishment of M. edulis spat in the presence of L. conchilega tubes in nested assemblages. This implies that
L. conchilega tubes facilitate the settlement of M. edulis larvae. Data are presented in mean±SE (n=24) and p-value are shown for negative binomial
(NB), zero-inflated error distribution (ZI). ** P ≤ 0.01; *** P < 0.001.
FIGURE 3

Predicted species distribution with probability of occurrence
showing logistic output predictions from MaxEnt for Lanice
conchilega and Mytilus edulis individuals and their shared niche in
soft-sediment intertidal flats in the Dutch Wadden Sea. Predictions
are shown in intervals of probability of occurrence from 0 to 1, from
orange (low probability; 0 – 0.5), yellow (mid probability; 0.5 – 0.6)
to green (high probability; > 0.6).
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monitored reef consisted of almost exclusively L. conchilega tubes

with 2201±121 individual tubes m-2 (mean±SE, n=20) and covered

a surface area of 383,507 m2 (Figure 6). In 2021, the reef was instead

dominantly shaped by M. edulis, and L. conchilega tubes were

mostly present in the adjacent habitat zone (50 – 150 m). The

total surface of the biogenic reef dominated byM. edulis was 33,047

m2 and the highest L. conchilega tube densities (660 individual tubes

m-2) were found within 50 m in the wake of the reef in 2021. Hence,

biogenic reef development of M. edulis and L. conchilega indicated

spatiotemporal dynamic habitat heterogeneity that consequently is

important to promote biodiversity (van der Ouderaa et al., 2021).
4 Discussion

In this study, we defined the positive association of two coastal

foundation species, Mytilus edulis and Lanice conchilega, from an

ecological, experimental, and statistical perspective. These two reef-

building species co-occurred in the same environment and partially

occupied the same ecological niche (30-46%). In nested

assemblages, L. conchilega tubes provided settlement substrate for

M. edulis spat. On the other hand, mussel and mixed mussel/oyster

reefs facilitated L. conchilega settlement in their wake (~50-150 m),
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sheltered from hydrodynamic forces. The interaction between these

species may result in spatial and temporal habitat heterogeneity

with fluctuating dominance of M. edulis and L. conchilega in which

both foundation species facilitate their own survival indirectly: 1) L.

conchilega tubes provide settlement substrate for M. edulis spat, 2)

development of M. edulis beds drives to the exclusion of L.

conchilega, 3) M. edulis beds facilitate L. conchilega in their wake,

and this, as well as the eventual loss of the reef after a storm,

followed by L. conchilega re-colonization, can initiate the cycle once

again. Hence, we conclude that interspecific facilitation

mechanisms may enhance the occurrence of both foundation

species. While not being strictly necessary for the occurrence of

either species, these species may and possibly expand each other’s

niche on the tidal flats of the Wadden Sea. Therefore, these

interactions among foundation species contribute to the species

distribution of tidal flat’ communities and organize landscape-scale

species patterns.
4.1 Species distribution

Our results showed a positive association between the

occurrence of M. edulis and L. conchilega. In addition, M. edulis
TABLE 1 Statistical outcome of a) Lanice conchilega tube counts in removal experiment indicating a lower abundance (negative binomial part of the
model < 0) and higher absence (zero-inflated part of the model > 0) of L. conchilega in the tubes removal treatment, b) the effect of tube removal on
Mytilus edulis larvae settlement in nested assemblages indicating a lower abundance and higher absence of M. edulis in tubes removal, c) higher L.
conchilega tube counts around mussel beds (50 and 150 m) in adjacent assemblages compared to nearby control.

a) parameter estimate SE 95% CI p-value

Lanice conchilega tube counts

negative binomial part

intercept 6.71 0.13 6.45 6.97

tubes removal -1.52 0.16 -1.82 -1.22 <0.001

zero inflated part

intercept -4.96 1.01 -6.94 -2.99

tubes removal 5.08 1.02 3.08 7.08 <0.001

b) parameter estimate SE 95% CI p-value

Mytilus edulis counts

negative binomial part

intercept 5.75 0.21 5.34 6.16

tubes removal -1.49 0.47 -2.40 -0.57 <0.01

zero inflated part

intercept -2.78 0.54 -3.83 -1.73

tubes removal 4.17 0.63 2.92 5.41 <0.001

c) parameter estimate SE 95% CI p-value

Lanice conchilega reef vs. control

-50 -23.51 3142.21 -10300 10200 1

0 -22.46 3142.21 -10300 10200 1

50 3.17 0.66 1.01 5.33 <0.001

100 1.76 0.66 -0.40 3.92 0.2429

150 3.08 0.67 0.89 5.26 <0.001

200 1.53 0.66 -0.64 3.69 0.4748
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and L. conchilega share 30% and 46% of their ecological niche,

respectively. These combined results suggest that interspecific

facilitation may contribute to the enlargement of the ecological

niche into the realized (and observed) ecological niche.

Enlargement of the niche by facilitation has been described

previously for mussel beds that stabilize the substratum and

increase salt marsh production via the deposition of nutrients

into the sediment (Bertness and Leonard, 1997; Stachowicz,

2001). Analyses of the large SIBES dataset (sampling stations:

n=42409) establish a robust basis for the assumption that M.

edulis and L. conchilega are positively correlated, potentially

enhancing each other’s fundamental niche. For example,

interspecific facilitation can ameliorate the environmental

stressors that otherwise would limit species occurrences, such as

providing settlement substrate or reducing hydrodynamic forces

(Callaway, 2003; Walles et al., 2015).
4.1 Facilitation in nested assemblage

Previous studies found that M. edulis settlement prefers

structured habitat surfaces over bare substrata (Dean, 1981;

Bourget et al., 1994) and that the structure of imitation tubes can

provide settlement substrate for M. edulis larvae (Callaway, 2003).

However, imitation tubes differed from natural tubes of L. conchilega

because they were more rigid, more solid, not hollow, more persistent

over time, and had no tentacle fringes (Callaway, 2003). This raised

the question of whether natural L. conchilega tubes can also facilitate

M. edulis larvae settlement. In this study, we showed that L.

conchilega can indeed provide a suitable settlement substrate for M.
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edulis spat in natural conditions. The mechanisms behind this

facilitation may be explained by two factors: the structure of the

tubes reduces the hydrodynamic forces (Borsje et al., 2014) and/or the

tubes provide a complex attachment substrate (Callaway, 2003). M.

edulis larvae may use different factors to find a suitable substratum for

settlement, e.g., physical [flow conditions, light, or gravity; (Bayne,

1964; Pernet et al., 2003)] or chemical [metabolites of algae or

invertebrates; (Dobretsov, 1999)] cues. Our findings suggest that L.

conchilega tubes provided settlement substrate for M. edulis spat, as

we did not find indications of altered hydrodynamics based on

sediment properties in the tubes removal plots compared to the

tubes present plots (Le Hir et al., 2000). However, an additional effect

of chemical metabolites produced by L. conchilega attracting M.

edulis cannot be excluded since we have not been able to measure

such cues.
4.2 Facilitation in adjacent assemblage

By attenuating hydrodynamic forces from waves and currents,

bivalve reefs typically have a much larger-scale impact on their

surrounding physical landscape than the area they actually cover

(Walles et al., 2015). This may facilitate other species such as

seagrasses, salt marsh plants, and cockles in adjacent assemblages

i.e., long-distance, cross-habitat facilitation (Wall et al., 2008;

Donadi et al., 2013; van de Koppel et al., 2015; Walles et al.,

2015). These reefs create habitat for other species by e.g., trapping

water and increasing tidal emergence time (Nieuwhof et al., 2018;

van der Ouderaa et al., 2021) or wave attenuation (Cheong et al.,

2013). Walles et al. (2015) found that the spatial extent of habitat
A B

C

FIGURE 5

Field surveys indicate (A) interspecific facilitation in adjacent assemblages of Lanice conchilega densities at 50 and 150 meters in the wake of the
mussel bed. The mussel bed affected environmental conditions by (B) higher sediment silt percentage at -50:50 meters distance from the reef and
(C) elevation of the sediment surface around the reef center (0 meters). Significance levels show the difference between the mussel bed and nearby
control. n.s. P > 0.05; *** P < 0.001.
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modification by bivalve reefs is of the same order of magnitude as

the reef area (length, width, height). In our study area, the sediment

surface of the bivalve reef was around 100 meters wide and on

average 0.35 meters higher than the surrounding tidal flat. A similar

elevation of the bare tidal flat to the height of the reef was reached at

around 110 – 140 meters in the wake of the reef. Hence, the

modified area leeward of the reef was expected to be around 100 –

140 meters. In addition, we found that the bivalve reefs increased

silt percentage and reduced median grain size up to 50 meters in

their wake. Both measurements are indicators of reduced

hydrodynamic forces (Le Hir et al., 2000). However, mixed

mussel/oyster reefs facilitated L. conchilega occurrence at 50 and

150 meters in their wake, but not at 100 meters. This might be

because of the high patchy distribution of L. conchilega (Callaway

et al., 2010). In general, our results imply that bivalve reefs create

suitable habitats for L. conchilega in adjacent assemblage by

mitigating hydrodynamic forces.
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4.3 Interplay between foundation species
creates dynamic habitat heterogeneity

We observed that L. conchilega tubes facilitated M. edulis

settlement and consequently reef establishment south-east of the

island Griend. In addition, we observed that the M. edulis reef

facilitated L. conchilega densities in the wake of the reef, which is

hydrodynamically less exposed. This suggests that interspecific

facilitation may promote the co-occurrence of both species by

creating temporal shifts between both species. Our findings find

support in the observations made by (Hertweck, 1995), who found

M. edulis spatfall attached to L. conchilega tubes in dense

aggregations on the tidal flats south of the island Spiekeroog,

German Wadden Sea. In addition, L. conchilega is frequently

found surrounding mussel beds (Hertweck, 1995; Bungenstock

et al., 2021). Although the interplay between both species appears

evident, these cause-effect relationships must be interpreted with

caution since they rely on observational data (Hertweck, 1995;

Bungenstock et al., 2021). Moreover, additional research

approaches, such as experiments and species distribution

modeling, further support the interdependency of the two species.

This extensive effort was essential for testing the interdependency

across various local contexts, long-term temporal scales, and large

spatial scales, ensuring objectivity in statistical analyses. Yet, the

question remains which environmental factors promote the

dominance of a certain foundation species? For example, it is

known that cold winters limit the growth of L. conchilega

populations (Strasser and Pieloth, 2001). On the other hand, L.

conchilega tubes are more resistant to storms or winter ice because

they are anchored deeper (~30 cm) into the sediment thanM. edulis

beds (Alves et al., 2017). Furthermore,M. edulis beds are attached to

the sediment surface and winter ice can dislodge the mussels from

the substratum (Bertness and Grosholz, 1985; Bungenstock et al.,

2021). Therefore, this study emphasizes the importance of

supporting optimal growth strategies for biogenic reef

development by biological interactions.
4.4 Long-term reef development

Long-term reef development of M. edulis and L. conchilega on

tidal flats is a dynamic process shaped by complex interactions

between environmental factors and biological interactions. M.

edulis spat aggregate densely on substrates, such as rocks, and

shells (Wehrmann, 2003). Over time, the accumulation of mussel

beds alters sedimentation patterns, stabilizes substrates, and

enhances the survival of the reef (Widdows et al., 1998). In this

study, we described that L. conchilega tubes function as settlement

substrates for M. edulis larvae. Eventually, the M. edulis spat may

develop into the physical habitat structure of a M. edulis bed, as

evidenced by Callaway (2003) findings from a six-year-long

experiment. The settlement of L. conchilega larvae relies on the

hydrodynamic conditions and the substrate to settle on

(D’Hurlaborde et al., 2022). Whether L. conchilega aggregations

will develop into a biogenic reef, depends on their resistance to
FIGURE 6

Biogenic reef development from 2019 till 2021. In 2019 (A), the
monitored reef consisted of almost exclusively Lanice conchilega
aggregations 2201±121 individual tubes m-2 (mean±SE, n=20). In
2021 (B, C), the reef was dominantly shaped by Mytilus edulis and L.
conchilega was present with the highest tube densities in the
adjacent habitat zone ~ 50 m in the wake of the reef.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1354009
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Nauta et al. 10.3389/fmars.2024.1354009
disturbance, recovery potential, and their large-scale persistence

(Rabaut et al., 2009; Callaway et al., 2010). We described that M.

edulis beds create favorable conditions for L. conchilega reef

development in their wake. Although we were unable to assess

this long-distance facilitation over an extended duration, similar

long-distance facilitation of the edible cockle Cerastoderma edule by

M. edulis beds was reported in 2009 and 2011 (Donadi et al., 2013).

Hence, the influence of interspecific facilitation seems to contribute

to the long-term development of biogenic reefs.
4.5 Consequences for nature management

The existence of biogenic reefs such as M. edulis and L.

conchilega relies on the establishment and survival of the reefs.

This existence can be enhanced by the optimization of the

environmental variables as settlement substrate and/or reduced

hydrodynamics. For instance, the protection of areas with

relatively stable L. conchilega aggregations can improve reef

settlement of M. edulis. Re-establishment of mussel beds after

storm events may be encouraged when L. conchilega aggregations

are present. For active restoration, it might be necessary to

temporarily mimic the physical structure of biogenic reefs with

artificial structures to improve the local environmental conditions

for reef establishment (Temmink et al., 2022; Nauta et al., 2023).

However, sufficient structure and size of the biogenic reef is needed

to achieve the restoration of landscape-scale connectivity (Gillis

et al., 2017). Biogenic reef structure and size of L. conchilega

aggregations can be classified by using a ‘reefiness’ score with

highest ‘reefiness’ scores for densities of >1,500 individual m-2, a

total area extent of >100,000 m2, and a relative height of >9 cm

(Hendrick and Foster-Smith, 2006; Rabaut et al., 2009). Based on

this ‘reefiness’ classification, the L. conchilega aggregation in this

study can be classified as high-scoring biogenic reefs. Restoring

landscape-scale connectivity means that the one biogenic reef-

building species needs to be restored to a sufficient physical scale

to generate positive effects on the other (foundation) species. The

methodology applied in this study, incorporating field surveys,

experiments, and species distribution models, could serve as a

recipe for further understanding and co-restoration of

interspecific dependency in the Dutch Wadden Sea. Moreover,

biogenic reefs including M. edulis and L. conchilega provide

numerous ecosystem services such as enhanced biodiversity and

fisheries, sediment stabilization, and reduced hydrodynamics

(Rabaut et al., 2007, 2010; De Smet et al., 2015; Alves et al., 2017;

zu Ermgassen et al., 2020). Therefore, we suggest that possibilities

for co-restoring foundation species with other foundation species

need to be further explored.
5 Conclusions

Our findings emphasize the significance of interspecific

facilitation between foundation species. Hence, enhancing

restoration and conservation initiatives centered around these
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foundation species can be achieved by integrating interspecific

facilitation processes. We suggest that it is valuable to look

beyond the target species itself and focus on co-restoring

foundation species and landscape-scale ecosystem connectivity.

Given the increasing pressures from climate change, especially on

tidal flats where species are constantly subjected to environmental

stressors, species strongly rely on each other for establishment and

survival. Foundation species living in these dynamic and harsh

circumstances can benefit from interspecific facilitation

interactions, with associated advantages for higher biodiversity

(De Smet et al., 2015; Christianen et al., 2017). Therefore,

interspecific facilitation on landscape scales requires more

attention in nature conservation and restoration programs.
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