1,696 research outputs found

    What makes the lac-pathway switch: identifying the fluctuations that trigger phenotype switching in gene regulatory systems

    Get PDF
    Multistable gene regulatory systems sustain different levels of gene expression under identical external conditions. Such multistability is used to encode phenotypic states in processes including nutrient uptake and persistence in bacteria, fate selection in viral infection, cell cycle control, and development. Stochastic switching between different phenotypes can occur as the result of random fluctuations in molecular copy numbers of mRNA and proteins arising in transcription, translation, transport, and binding. However, which component of a pathway triggers such a transition is generally not known. By linking single-cell experiments on the lactose-uptake pathway in E. coli to molecular simulations, we devise a general method to pinpoint the particular fluctuation driving phenotype switching and apply this method to the transition between the uninduced and induced states of the lac genes. We find that the transition to the induced state is not caused only by the single event of lac-repressor unbinding, but depends crucially on the time period over which the repressor remains unbound from the lac-operon. We confirm this notion in strains with a high expression level of the repressor (leading to shorter periods over which the lac-operon remains unbound), which show a reduced switching rate. Our techniques apply to multi-stable gene regulatory systems in general and allow to identify the molecular mechanisms behind stochastic transitions in gene regulatory circuits.Comment: Version

    Hard-Wired Control of Bacterial Processes by Chromosomal Gene Location

    Get PDF
    Bacterial processes, such as stress responses and cell differentiation, are controlled at many different levels. While some factors, such as transcriptional regulation, are well appreciated, the importance of chromosomal gene location is often underestimated or even completely neglected. A combination of environmental parameters and the chromosomal location of a gene determine how many copies of its DNA are present at a given time during the cell cycle. Here, we review bacterial processes that rely, completely or partially, on the chromosomal location of involved genes and their fluctuating copy numbers. Special attention will be given to the several different ways in which these copy-number fluctuations can be used for bacterial cell fate determination or coordination of interdependent processes in a bacterial cell

    Chromosome segregation drives division site selection in Streptococcus pneumoniae.

    Get PDF
    Accurate spatial and temporal positioning of the tubulin-like protein FtsZ is key for proper bacterial cell division. <i>Streptococcus pneumoniae</i> (pneumococcus) is an oval-shaped, symmetrically dividing opportunistic human pathogen lacking the canonical systems for division site control (nucleoid occlusion and the Min-system). Recently, the early division protein MapZ was identified and implicated in pneumococcal division site selection. We show that MapZ is important for proper division plane selection; thus, the question remains as to what drives pneumococcal division site selection. By mapping the cell cycle in detail, we show that directly after replication both chromosomal origin regions localize to the future cell division sites, before FtsZ. Interestingly, Z-ring formation occurs coincidently with initiation of DNA replication. Perturbing the longitudinal chromosomal organization by mutating the condensin SMC, by CRISPR/Cas9-mediated chromosome cutting, or by poisoning DNA decatenation resulted in mistiming of MapZ and FtsZ positioning and subsequent cell elongation. Together, we demonstrate an intimate relationship between DNA replication, chromosome segregation, and division site selection in the pneumococcus, providing a simple way to ensure equally sized daughter cells

    High-resolution analysis of the pneumococcal transcriptome under a wide range of infection-relevant conditions.

    Get PDF
    Streptococcus pneumoniae is an opportunistic human pathogen that typically colonizes the nasopharyngeal passage and causes lethal disease in other host niches, such as the lung or the meninges. The expression and regulation of pneumococcal genes at different life-cycle stages, such as commensal or pathogenic, are not entirely understood. To chart the transcriptional responses of S. pneumoniae, we used RNA-seq to quantify the relative abundance of the transcriptome under 22 different infection-relevant conditions. The data demonstrated a high level of dynamic expression and, strikingly, all annotated pneumococcal genomic features were expressed in at least one of the studied conditions. By computing the correlation values of every pair of genes across all studied conditions, we created a co-expression matrix that provides valuable information on both operon structure and regulatory processes. The co-expression data are highly consistent with well-characterized operons and regulons, such as the PyrR, ComE and ComX regulons, and have allowed us to identify a new member of the competence regulon. Lastly, we created an interactive data center named PneumoExpress (https://veeninglab.com/pneumoexpress) that enables users to access the expression data as well as the co-expression matrix in an intuitive and efficient manner, providing a valuable resource to the pneumococcal research community
    corecore