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ABSTRACT

Streptococcus pneumoniae is an opportunistic hu-
man pathogen that typically colonizes the nasopha-
ryngeal passage and causes lethal disease in other
host niches, such as the lung or the meninges. The
expression and regulation of pneumococcal genes
at different life-cycle stages, such as commensal or
pathogenic, are not entirely understood. To chart
the transcriptional responses of S. pneumoniae, we
used RNA-seq to quantify the relative abundance
of the transcriptome under 22 different infection-
relevant conditions. The data demonstrated a high
level of dynamic expression and, strikingly, all an-
notated pneumococcal genomic features were ex-
pressed in at least one of the studied conditions.
By computing the correlation values of every pair
of genes across all studied conditions, we created
a co-expression matrix that provides valuable infor-
mation on both operon structure and regulatory pro-
cesses. The co-expression data are highly consistent
with well-characterized operons and regulons, such
as the PyrR, ComE and ComX regulons, and have al-
lowed us to identify a new member of the competence
regulon. Lastly, we created an interactive data cen-
ter named PneumoExpress (https://veeninglab.com/
pneumoexpress) that enables users to access the ex-
pression data as well as the co-expression matrix in
an intuitive and efficient manner, providing a valuable
resource to the pneumococcal research community.

INTRODUCTION

Streptococcus pneumoniae (the pneumococcus) is an op-
portunistic human pathogen with a high carriage rate in

children, immunocompromised individuals and the elderly.
The pneumococcus accounts for the majority of all mor-
tality related to lower respiratory tract infections (LRTIs),
single-handedly placing LRTIs as the deadliest communica-
ble disease (1). Additionally, LRTIs are the second princi-
pal cause for loss of healthy life (2), with young children and
the elderly especially susceptible to pneumococcal pneumo-
nia (3,4). In addition to lung infection, S. pneumoniae is re-
sponsible for other lethal infections, such as sepsis, the pres-
ence of the pneumococcus in the blood, and meningitis, the
presence of pneumococcus in the cerebrospinal fluid (CSF)
(5,6). Complicating matters, the pneumococcus is part of
the typical microbiota of the respiratory tract (7–9), with
four in five young children (<5 years), and one in three
adults carrying the bacterium (10,11).

These various environments encountered by the pneu-
mococcus demand highly adaptive and flexible regulation.
Inter-host transmission, for example, involves the switch
from conditions in the human nasopharynx to airborne or
surface-associated droplets. Here, the bacteria must survive
a lower temperature, desiccation and oxygenated air (12). In
addition, sites of colonization and infections inside the host
are equally challenging with varying acidities and differing
levels of oxygen and carbon dioxide, diverse temperatures
and a scarcity of carbon sources (13), not to mention the
actions of the innate and adaptive immune system. In addi-
tion, the nasopharyngeal passage can be crowded with mul-
tiple strains of streptococcal species, other bacteria, fungi
and phages (13). There, the occupants are competing for
resources, including location and nutrients. Thus, it is not
surprising that a significant part of described pneumococcal
virulence factors function as adherence factors or adhesins,
which typically bind to host surface-exposed molecules like
proteins and sugars to form a stable anchor onto the col-
onization site. Additionally, the pneumococcus employs a
wide range of transporters to import necessary nutrients,
including sugars (14), amino acids (15,16) and essential
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metal ions, such as zinc (17,18) and manganese (19,20). Fur-
thermore, competence, one of the hallmark characteristics
of the pneumococcus, is a response to living in a diverse
ecosystem and is required to relieve stress and/or to acquire
beneficial genetic material from related strains and other
bacteria (21,22). Indeed, competence is induced by several
stress factors, including DNA damage (23–25), and can be
induced by co-incubation with epithelial cells (26).

Interestingly, the pneumococcus has only a limited ge-
netic potential to express the dedicated gene products re-
quired to survive in these new and highly varied conditions.
Sequenced pneumococcal genomes from clinical and model
strains reveal the presence of a pan-genome of ∼3000–
5000 genes (27), with up to 90% gene conservation between
strains. Nevertheless, individual pneumococcal strains have
a relatively small genome with ∼2-million base pairs (bps).
For example, strain D39V, one of the work horses of pneu-
mococcal research, has 2 046 572 bps with 2146 genomic
features (28) (see https://veeninglab.com/pneumobrowse).
Moreover, small bacterial genomes are more likely to be
densely packed with genomic features, which puts a limit
to the number of functional elements contained (29). One
of the strategies used to circumvent this limitation is the en-
coding of moonlighting proteins, which can perform more
than one function. For example, �-enolase, a major gly-
colytic enzyme, also binds human plasminogen, thereby
combining carbon metabolism and cellular adhesion in one
molecule, helping to reduce genome size (30,31). In addi-
tion, gene regulation strategies that lead to transcriptional
adaptation and nuanced levels of gene products might be
the key to pneumococcal virulence and in-host survival.
Unfortunately, no advanced studies comparing S. pneumo-
niae gene transcription under different environmental stres-
sors exist, even though a detailed investigation of these
gene expression patterns could provide invaluable informa-
tion about its pathogenicity. A better understanding of how
S. pneumoniae uses its compact genome to adapt to such
varying environments will help guide future prevention and
treatment strategies against this often deadly bacterium.

Quantitative RNA-seq studies are strongly facilitated
by the availability of high-resolution data on transcrip-
tome architecture, such as determined for Streptococcus
agalactiae (32) and the here-used S. pneumoniae strain
D39V (CP027540) (28). We quantified the relative abun-
dance of the transcriptome under exposure to 22 differ-
ent infection-relevant conditions. Next, we classified the
annotated features into genes that are highly expressed
across all conditions and genes demonstrating a condition-
dependent, dynamic expression. Furthermore, we gener-
ated a co-expression matrix containing the correlation value
of every pair of genes. We exploited the matrix to iden-
tify a new member of the competence regulon: a small hy-
pothetical protein encoded by SPV 0391 (briC). Further-
more, we provide the research community with the en-
tire compendium of normalized expression values, exhaus-
tive fold changes and the co-expression matrix in Pneumo-
Express (https://veeninglab.com/pneumoexpress), a user-
friendly browsable data center, enabling easy access. Finally,
in PneumoExpress, we provide the research community
with direct access to PneumoBrowse (https://veeninglab.
com/pneumobrowse), where users can browse the genomic

environment of their gene(s) of interest. The work and data
presented here provide a valuable resource to the pneumo-
coccal and microbial research community and will expand
our knowledge of S. pneumoniae gene regulation, increasing
our ability to prevent and fight infections.

MATERIALS AND METHODS

Culturing of S. pneumoniae D39V and pneumococcal trans-
formation

Streptococcus pneumoniae was routinely cultured without
antibiotics. Strain construction and preparation of chem-
ically defined media are described in detail in the Sup-
plementary Materials and Methods. Oligonucleotides are
listed in Supplementary Table S10, while bacterial strains
are listed in Supplementary Table S11.

Rationale for infection-relevant growth and transfer condi-
tions of S. pneumoniae

The infection-relevant conditions were selected from a sub-
set of microenvironments that the pneumococcus might en-
counter during its opportunistic-pathogenic lifestyle. Recre-
ating conditions that an organism naturally encounters dur-
ing its lifestyle have been successful in charting a wide
transcriptional responses in other bacteria (33–36). Here,
we chose seven main host-like growth conditions: (i) nose-
mimicking conditions (NMC), simulating colonization, (ii)
lung-mimicking conditions (LMC), simulating pneumonia,
(iii) blood-mimicking conditions (BMC), simulating sepsis,
(iv) cerebrospinal fluid-mimicking conditions (CSFMC),
simulating meningitis, (v) transmission-mimicking condi-
tions, (vi) laboratory conditions (in C+Y medium) that al-
low rapid growth and (vii) co-incubation with human lung
epithelial cells. Sicard’s defined medium was selected as the
backbone of the first five host-like growth conditions (37).
Additionally, co-incubation with epithelial cells was per-
formed as previously described (26).

Because competence is a major hallmark of S. pneumo-
niae and it contributes to pneumococcal survival in the host
(21,22), we included three competence time-points: 3, 10
and 20 min after the exogenous addition of competence
stimulating peptide-1 (CSP-1) in C+Y. Moreover, the com-
petence regulon is well-characterized (38,39), allowing us to
benchmark the quality of our experimental data and anal-
ysis pipeline.

Since S. pneumoniae can migrate between niches, we also
analyzed the transcriptomes of pneumococci being trans-
ferred between conditions. Specifically, nose to lung (NMC
� LMC), nose to blood (NMC � BMC), nose to CSF
(NMC � CSFMC), blood to C+Y (BMC � C+Y), C+Y
to nose (C+Y � NMC), nose to transmission for 5 min
(Transmission, 5 min), nose to transmission for 60 min
(Transmission, 60 min), growth in nose to transmission for
5 min and back to nose (Transmission � NMC). Addi-
tionally, a condition mimicking meningeal fever was in-
cluded, whereby S. pneumoniae growing in CSFMC (37◦C)
was transferred to 40◦C (FEVER). After the transfer, cells
were further incubated for only 5 min prior to RNA isola-
tion, because of the rapid production and turnover of bacte-
rial transcripts, especially in fast-growing bacteria (40,41).
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Moreover, we were interested in elucidating rapid transcrip-
tional responses of the pneumococcus, when exposed to
new and different conditions. Collectively, the 22 growth
and transfer conditions are referred to as ‘infection-relevant
conditions’ (Figure 1 and Table 1).

To recapitulate host-like growth conditions, we manip-
ulated sugar type and concentration, protein level, partial
CO2 pressure, temperature, acidity of the medium and pres-
ence of epithelial cells (Table 2). We manipulated the type of
carbon source because S. pneumoniae can utilize at least 32
different carbon sources (14), it devotes a third of all trans-
port mechanisms to carbohydrate import (42) and it gener-
ates adenosine triphosphate (ATP) exclusively from fermen-
tation (43). In healthy nose and lung, respiratory mucus is
the sole available carbon source, ranging from 1 g/l (lung)
(44) to 2 g/l (nasopharyngeal passage) (45). In human mu-
cus, N-acetylglucosamine (GlcNAc) is the main monosac-
charide accounting for up to 32% of dry weight, followed by
galactose (29%), sialic acid, fucose and N-acetylgalactose
(46). On the other hand, glucose can be found in high con-
centrations in blood (47). Therefore, two sources of carbon
were included: GlcNAc in NMC and LMC and glucose in
BMC, CSFMC, C+Y and infection conditions.

Temperature was maintained at 37◦C for all conditions
except for NMC (30◦C) since nasal temperature ranges
from 30 to 34◦C (48). We set fever temperature at 40◦C
and transmission at 20◦C (room temperature). In partic-
ular, transmission was modeled by exposing the pneumo-
coccus to room temperature and ambient oxygen level on
a sterile surface. Additionally, S. pneumoniae survives up
to 120 min in transmission conditions. On the other hand,
confluent epithelial cells present a biotic surface that neces-
sitates a different pneumococcal phenotype, such as form-
ing biofilms (49). Furthermore, the epithelial layer actively
interacts with the bacteria and regulates its own transcrip-
tome in response to the presence and activity of the pneu-
mococcus (26). Here, we included the interaction between
S. pneumoniae D39V and human epithelial cell line A549 in
five consecutive time-points, 0, 30, 60, 120 and 240 min post-
infection (mpi) (26). Interaction with host cells has been ex-
ploited in a similar transcriptional study in Staphylococcus
aureus (34).

For each condition, two biological replicates were in-
cluded, except for a single replicate for the last time point of
the infection to A549 (infection, 240 mpi). For a detailed de-
scription of infection-relevant conditions, see Supplemen-
tary Materials and Methods. A complete list of medium
components is available as Supplementary Table S1.

Total RNA isolation, library preparation and sequencing

Pneumococcal cultures from infection-relevant conditions
were pre-treated with ammonium sulfate to terminate
protein-dependent transcription and degradation. Total
RNA was isolated and the quality checked using bleach
gel (50) and chip-based capillary electrophoresis. Only co-
incubation samples (libs. 35–43, Table 1) were depleted for
ribosomal RNAs (rRNAs). Then, complementary DNA
(cDNA) libraries were created and sequenced on Illumina
NextSeq 500 as described previously (26).

Figure 1. Mimicking conditions relevant to the opportunistic pathogen
lifestyle. (A) Twenty-two conditions were selected, including growth in five
different conditions (laboratory, in C+Y medium [C+Y], NMC, LMC,
BMC and CSFMC); a model of meningeal fever (FEVER); transmis-
sion conditions; eight transfers between conditions; three competence
time-points and five epithelial co-incubation time-points (Table 1). (B)
cDNA libraries were prepared without rRNA depletion. Quality controls
of the reads were performed before and after trimming. Trimmed reads
were aligned and counted. Next, highly and conditionally expressed genes
were categorized based on normalized read counts, while high- and low-
variance genes were classified based on fold changes. High-variance and
conditionally expressed genes together were defined as dynamic genes.
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Table 1. List of infection-relevant conditions

Conditions Description
Libraries (biological
replicates)

NMC Growth in NMC (1,2)
Transmission, 5 min Growth in NMC, transmission 5 min (3,4)
Transmission, 60 min Growth in NMC, transmission 60 min (5,6)
Transmission � NMC Growth in NMC, transmission 5 min, back to NMC 5 min (7,8)
NMC � LMC Growth in NMC, in LMC for 5 min (9,10)
LMC Growth in LMC (11,12)
NMC � BMC Growth in NMC, in BMC for 5 min (13,14)
BMC Growth in BMC (15,16)
BMC � C+Y Growth in BMC, in C+Y 5 min (17,18)
NMC � CSFMC Growth in NMC, in CSF-mimicking conditions (CSFMC) for 5 min (19,20)
CSFMC Growth in CSF-mimicking conditions (21,22)
FEVER Growth in CSFMC, then 40◦C (fever-like) for 5 min (23,24)
C+Y � NMC Growth in C+Y, in NMC for 5 min (25,26)
C+Y Growth in C+Y (27,28)
CSP, 3 min Growth in C+Y, CSP (competence-stimulating peptide) 3 min (29,30)
CSP, 10 min Growth in C+Y, CSP 10 min (31,32)
CSP, 20 min Growth in C+Y, CSP 20 min (33,34)
Infection, 0 mpi Co-incubation with A549, 0 min post-infection (35,36)
Infection, 30 mpi Co-incubation with A549, 30 min post-infection (37,38)
Infection, 60 mpi Co-incubation with A549, 60 min post-infection (39,40)
Infection, 120 mpi Co-incubation with A549, 120 min post-infection (41,42)
Infection, 240 mpi Co-incubation with A549, 240 min post-infection (43)

Table 2. Parameters in infection-relevant growth media

Glucose
(g/l)

GlcNAc
(g/l)

Serum
albumin
(g/l) CO2 (%) Temp. (◦C) pH

Epithelial
cells (A549)

(NMC) – 1.28 (45,46) 1 (45) N.D. 30 (48) 7.0 (57) −
LMC – 0.64 (44,46) 3 (44) 5 37 7.0 (57) −
BMC 0.9 (47) – 67 (47) 5 37 7.4 (47) −
CSFMC 0.45 (58) – 0.45 (58) 5 37 7.8 (59)) −
Transmission – – – N.D. 20 – −
C+Y 1.79* – 0.73* N.D. 37 6.8* −
Infection 2.0 (26) – 10 (26) 5 (26) 37 (26) 7.4 (26) +

*This study.

Data analysis and categorization of genes

Quality control was performed before and after trimming.
Trimmed reads were aligned to the recently sequenced
genome (CP027540) and counted according to the corre-
sponding annotation file (28). In particular, counting was
performed in (i) multi-mapping mode to account for the
possibility of multiple loci in the genome, (ii) overlapping
mode for genes belonging to the same operon and (iii)
fraction mode to distribute the reads coming from multi-
mapped and overlapping reads (51). Reads were then nor-
malized as transcripts per million (TPM) (52) and as regu-
larized log, a data transformation method in DESeq2 (53).
Highly expressed and lowly expressed genes were catego-
rized from TPM values excluding rRNAs. Decile values
were used to partition expression values into 10 classes.
The ninth decile serves as the minimum value for highly ex-
pressed genes, while the first decile was used as the maxi-
mum limit for lowly expressed genes. Sixty genes had TPM
values above the ninth decile in all infection-relevant con-
ditions. Along with the 12 rRNA loci, these 72 genes were
categorized as highly expressed genes. On the other hand,
there was no gene below the lower threshold in all condi-
tions. However, 496 genes have TPM below the limit in at

least one condition; these genes were categorized as condi-
tionally expressed.

Exhaustive fold changes were calculated for every pair
of conditions out of the 22 infection-relevant conditions,
resulting a total of 231 comparisons (Supplementary Ta-
ble S8) (53). Then, fold changes for comparisons reported
by DESeq2 as ‘low mean normalized count’ were manu-
ally set to 0. ‘Low mean normalized count’ denotes lowly
expressed genes for which significance (P-value) cannot be
calculated confidently (53). Conditionally expressed genes
were excluded from the calculation of the limits of high- and
low-variance genes because, by definition, these genes have
high variance. The coefficient of variance (cvar) for every
gene across the 231 fold changes was calculated and used as
the base for variance-based partition. Here, as previously,
decile values were used to partition the fold changes into 10
classes. As before, the cvar ninth decile was chosen as the
minimum value for high-variance genes, and the first decile
as the maximum limit for low-variance genes. There were
164 high-variance genes, which we combined with condi-
tionally expressed genes and referred to as dynamic genes.

Calculations of rRNA fold changes required an alterna-
tive approach since normalization based on library size can-
not be used on the highly abundant rRNAs. Instead, the ex-
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pression values of the least variable 50% of all genes (1067
features) were used to calculate the normalization factors
for individual libraries. The normalization factors were ap-
plied to the whole libraries and to normalize rRNA expres-
sion values (54). Afterward, fold changes for the rRNA-
encoding genes were calculated. Hypergeometric tests to as-
sess enrichment were performed by the built-in function,
phyper within the R environment (v. 3.4.2).

Generation of the co-expression matrix

The exhaustive fold changes across the pneumococcal
genome were used to calculate the correlation value of ev-
ery possible set of two annotated features. First, the dot-
products between vectors of fold changes of the two target
genes (a, non-normalized correlation value) and self-dot-
products of each gene (b and c) were calculated. A normal-
ized correlation value was obtained by calculating the ra-
tio of the non-normalized value (a) to the geometric mean
of the self-dot-products (b and c). The geometric mean of
b and c was calculated as the square root of the multiplica-
tion product of the two values. The normalized correlation
value was then mapped into the matrix by the genomic po-
sitions of both genes (Figure 6A).

Online compendium

The compendium can be accessed at https://veeninglab.
com/pneumoexpress. The data are stored in a MySQL
database as gene expression values. Gene expression graphs
are generated by D3 (Data Driven Documents, https://d3js.
org). Gene expression is presented in DESeq2-normalized
values, regularized logarithm (rlog) (53) and TPM (52), in-
cluding log-transformed TPM and centered TPM. Exhaus-
tive fold changes and correlation values were included as
part of the pneumococcal compendium. Centering has been
described to be a useful transformation to present –omics
data (55).

Luciferin assays

The firefly luciferase gene (luc) was transcriptionally fused
to the 3′-end of target operons, comCDE and SPV 0391-
2157, to monitor gene expression levels (56). A kanamycin
resistance cassette under a constitutive promoter was used
as selection marker. Plate assays were performed in C+Y
with 0.25 mg/ml luciferin and with and without the ad-
dition of 100 ng/�l CSP-1 from the beginning of the ex-
periment or after 2 h incubation. Total sugar molarity was
maintained at the same level in experiments involving vari-
ous sugars (appABCD luc).

RESULTS

Infection-relevant conditions: creating the compendium

To reveal the degree of global gene regulation occurring
in S. pneumoniae under infection-relevant conditions, we
exposed strain D39V to 22 conditions that mimic aspects
of the varying host environment (26,44–48,57–59) and per-
formed a semi-quantitative analysis of the genome-wide

transcriptional responses. The conditions and growth me-
dia were chosen to recapitulate the most relevant microen-
vironments the pneumococcus might encounter during its
opportunistic-pathogenic lifestyle in order to determine the
extent to which gene expression adapts to changing envi-
ronments (‘Materials and Methods’ section and Figure 1A;
Supplementary Table S1).

Statistics pertaining to the RNA-seq data were examined
to determine if the coverage was sufficient to measure differ-
ential gene expression. The total number of trimmed reads
per library ranged from 26 to 149 million reads (average:
89 million reads). In the non-rRNA-depleted libraries (libs.
1–34, Table 1), 99.9% of reads were mapped onto the pneu-
mococcal genome (range: 99.8–99.9%). As expected, most
reads from these non-depleted libraries aligned to the four
rRNA loci of the pneumococcus. On average 95.4% of reads
mapped to rRNAs, ranging from 93.4 to 97.7%, with reads
mapping to transfer RNAs occupying on average 0.03% of
total reads (0.01–0.05%, Figure 2A). On the other hand, of
the rRNA-depleted dual RNA-seq libraries (libs. 35–43, Ta-
ble 1), an average of 64.6% of trimmed reads mapped onto
the pneumococcal genome (range: 48.4–84.6%), while the
rest mapped to the human genome. Excluding reads that
mapped to pneumococcal rRNA genes and taking into ac-
count the read length (75 nt), the sequencing depth of li-
braries (i.e. coverage of the genome) ranged from 76× to
1944×, which is sufficient to elucidate differential gene ex-
pression in bacteria (60,61).

We then used principal component analysis (PCA) to de-
scribe the general behavior in all conditions, especially re-
lating to how each condition resembled another condition,
relying on the fact that close distance or clustering in a
PCA plot indicates a similar transcriptomic response be-
tween these conditions. This analysis indicated that three
clusters of conditions could be observed, which roughly cor-
responded to the basal medium used in the conditions. The
first cluster consisted of the five time-points that occur dur-
ing the infection of human epithelial cells, while the sec-
ond cluster consisted of the competence time-points. Lastly,
the third cluster contained all other conditions (Figure 2B).
Interestingly, the growth in C+Y clustered with the lat-
ter group and not with the competence samples, indicating
that clustering represents the biological response and is not
solely dependent on the type of medium. The clustering be-
havior in the PCA plot also indicated that the activation of
competence in the pneumococcus represents a major tran-
scriptional shift.

Because the dataset is derived from two different prepara-
tion and sequencing batches, we wanted to ensure that the
clustering was genuine and not due to variations in sam-
ple processing. In particular, libs. 1–34 belong to a differ-
ent batch than libs. 35–43 (see Table 1). In order to account
for these batches, we performed a batch effect correction
(62). We did not observe appreciable differences in genome-
wide expression values and clustering behavior before and
after batch effect removal. Thus, we concluded the cluster-
ing behavior is truly due to biological responses and not be-
cause of any batch effect. Subsequently, we used the original
dataset for downstream analysis.

To visualize gene expression across the 22 conditions, we
generated the ‘shortest tour’ through the PCA plot, which
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Figure 2. Distribution of libraries and conditions. (A) The number of trimmed reads of the 43 libraries ranged from 26 to 149 million reads, averaging 89
million reads. Non-rRNA-depleted libraries were dominated by reads mapped to ribosomal RNA genes, averaging 95% (range: 93–98%, libs. 1–34). (B)
Principal component analysis of gene expression in all conditions showed three clusters of conditions: conditions based on competence (CSP, 3, 10 and 20
min; purple), epithelial infection (infection 0, 30, 60, 120 and 240 mpi; green) and other infection-relevant conditions (orange). 1 = Transmission � NMC;
2 = NMC � LMC; 3 = BMC � C+Y.

helps to visualize which samples show the most similar tran-
scriptomes (Supplementary Figure S1A). First, we calcu-
lated the Euclidean distances, or the straight line, between
the conditions on the 2D PCA plot. Subsequently, we min-
imized the total distance needed to visit all the points only
once, the so-called TSP (traveling salesman problem) algo-
rithm (63). We have further validated gene expression values
by quantitative PCR (qPCR, Supplementary Figure S1C).
Taken together, we observed extensive S. pneumoniae dif-
ferential gene expression that was highly dependent on its
environment.

Categorization of genes: highly expressed and dynamic genes

Read count normalization was performed in two ways:
TPM (52) and rlog (53). While TPM-normalization corrects
for the size of the library and length of a feature, rlog scales
abundance directly to a log2-scale while adjusting for library
size. In addition, the rlog is considered suitable for visual-
izing gene expression across diverse conditions (53), while
TPM values were used to categorize genes as highly or lowly
expressed.

The 72 highly expressed genes include those encoding
rRNAs and the 34 genes coding for ribosomal structural
proteins. Other genes, including the two translation elon-
gation factors fusA and tuf, DNA-dependent RNA poly-
merase rpoA, transcription termination protein nusB and
the histone-like protein hlpA, were also highly expressed
in all conditions. Additionally, a set of genes associated
with carbohydrate metabolism were highly expressed: fba
(fructose-bisphosphate aldolase), eno (enolase), ldh (lactate
dehydrogenase), gap (glyceraldehyde-3-phosphate dehydro-
genase) and a gene encoding a subunit of ATP synthase,
atpF. A complete list of highly expressed genes is avail-
able as Supplementary Table S2. The highly expressed genes
are enriched for genes with essential cellular functions (hy-
pergeometric test, P < 0.05) (64,65), with little differential
expression across conditions. We speculated that because
these genes perform core housekeeping functions, such as

protein translation, RNA transcription, DNA maintenance
and carbon metabolism, the expression of these genes is
maintained at a high abundancy with little to no transcrip-
tional regulation under different conditions.

On the other hand, our analysis reported 498 condition-
ally expressed genes, which were transcriptionally regulated
as demonstrated by the great fluctuation of messenger RNA
(mRNA) levels across infection-relevant conditions. A full
list of conditionally expressed genes is available as Supple-
mentary Table S3. In this category, 48 genes (9.6%) en-
coded proteins involved in carbohydrate import, includ-
ing transporters of galactosamine (gadVWEF), cellobiose
(SPV 0232-4, celBCD), hyaluronate-derived oligosaccha-
rides (SPV 0293, SPV 0295-7), galactose (SPV 0559-61),
ascorbic acid (ulaABC) and mannose (SPV 1989-92). Out
of the 48 genes, 31 genes are preceded by a catabolite con-
trol protein A (CcpA)-binding site, which suggests that their
expression is under the direct control of CcpA. In S. pneu-
moniae, CcpA acts as central switch that regulates carbon
metabolism and contributes to pneumococcal survival and
virulence inside the host (66,67).

In our dataset, the 31 genes encoding sugar importers
were highly expressed in the presence of the alternative
sugar, N-acetylglucosamine, found in the NMC and LMC
media and in transfers to NMC. Indeed, the transfer from
NMC (carbon source: N-acetylglucosamine) to LMC (car-
bon source: N-acetylglucosamine) did not lead to the differ-
ential expression of these genes. On the other hand, genes
encoding importers of cellobiose (SPV 0232-4, celBCD),
galactose (gatABC), lactose (lacE2F2) and multiple sugars
(SPV 1583-5) were activated in co-incubation with epithe-
lial cells, although the medium only contains glucose. This
activation might be due to the presence of host-derived al-
ternative sugars, as we previously showed that washed ep-
ithelial cells did not incite such gene activation (26).

In addition, exhaustive comparisons (231 in total) be-
tween every set of two conditions were performed. The
coefficient of variation of the summarized fold changes
per gene were used to categorize high- and low-variance

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article-abstract/46/19/9990/5079695 by Inst suisse D

roit com
pare user on 10 D

ecem
ber 2018



9996 Nucleic Acids Research, 2018, Vol. 46, No. 19

genes (‘Materials and Methods’ section). High-variance
genes include pyrimidine-related genes (pyrFE, pyrKDb,
uraA and pyrRB-carAB) and purine-associated genes (purC,
purM and purH). These genes were activated during co-
incubation (infection, 0–240 mpi), transfer to transmission
(Transmission, 5 and 60 min) and growth in LMC. Fur-
thermore, we observed that members of the ComE regu-
lon, designated as early competence genes (68), were heav-
ily upregulated in all competence time-points (CSP, 3, 10
and 20 min), CSFMC, FEVER and late co-incubation with
epithelial cells (infection, 120 and 240 mpi). In contrast,
the expression of the ComX-regulated, i.e. late competence
(38,39), genes peaks 10 min after the addition of CSP-1
(CSP, 10 min) and on transfer to transmission (Transmis-
sion, 5 and 60 min). We have combined conditionally ex-
pressed genes and high-variance genes into a single cate-
gory: dynamically expressed genes (Figure 3 and Supple-
mentary Tables S3 and S4). In addition, the expression of
low-variance genes can be observed in Supplementary Fig-
ure S2A. Together, this coarse-grained analysis showed the
presence of a large set of genes that are conditionally ex-
pressed (∼25% of all genetic features), indicating a large-
scale rewiring of the pneumococcal transcriptome upon
changing conditions.

Growth-dependent expression of rRNA

While rRNA depletion allows for a higher coverage of
mRNA sequence reads, it also introduces bias to sequenced
libraries, partially due to depletion of sequences similar to
rRNA (69). We have opted not to deplete rRNAs in most of
the libraries, endowing the compendium with an unbiased
relative quantification of the total RNA. This approach also
gave us the rare opportunity to investigate the expression
levels of rRNAs in the conditions under study. Because of
the abundance and stability of rRNA, we adopted an al-
ternative normalization procedure prior to calculating the
fold-change. Rather than normalizing rRNA read counts
based on the total number of reads in the library (as is
the standard procedure), we exploited read counts of low-
variance genes to define an alternative normalization fac-
tor (‘Materials and Methods’ section). Furthermore, this
approach more directly implements the basic assumption
of differential gene analysis, i.e that the majority of genes
are not differentially expressed when comparing two condi-
tions. Generally, this assumption implies that total library
size is largely insensitive to differential expression of a small
fraction of genes and therefore constitutes a simple and
suitable normalization factor of gene expression. However,
since rRNAs dominate the total RNA libraries, differential
rRNA expression would have a non-negligible effect on to-
tal library size, necessitating a more direct normalization
method, as applied here.

When comparing rRNA levels between the various con-
ditions, they were significantly higher in fast-growing pneu-
mococci (C+Y) compared to slow-growing cells (nose-
mimicking and lung-mimicking growth, Figure 3C). rRNA
expression in the Gram-positive model organism Bacil-
lus subtilis has previously been reported to be regulated

Figure 3. Categorization of genes. (A) Visualization of the number of genes
in all conditions according to their categories: steadily highly expressed
(purple), conditionally expressed (green) and others (orange). Of the 2146
features, 73 are classified as highly expressed, while 498 features are con-
ditionally expressed (lowly expressed in at least one condition). (B) Highly
expressed genes include essential genes, genes encoding ribosomal proteins
and rRNAs. Dynamic genes are a combination of the 164 high-variance
genes and 498 conditionally expressed genes. (C) The 23S rRNA was sig-
nificantly downregulated in nose-mimicking (NMC) and lung-mimicking
(LMC) growth compared to rich C+Y growth (P < 0.05). The 16S rRNA
showed a similar trend, but it was not statistically significant (P = 0.33,
C+Y to NMC; P = 0.83, C+Y to LMC; error bars represent standard er-
ror). (D) Expression values (regularized log) of high-variance genes were
centered, as described in Supplementary Materials and Methods, and plot-
ted as heat maps. Distinct clusters of gene expression can readily be ob-
served (purple: high expression, green: low expression).
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by availability of deoxyguanosine triphosphate (dGTP) be-
cause the initiating nucleotide for rRNA transcription is a
guanosine triphosphate (GTP) rather than the more com-
mon ATP (70). Even though rRNA operons in S. pneumo-
niae are also initiated with GTP (28), we did not observe
a correlation between the initiating nucleotide and gene ex-
pression levels in cells grown in different media (Supplemen-
tary Figure S2C). Nevertheless, in prokaryotes, including S.
pneumoniae, genes encoding ribosomal RNAs and proteins
are conserved in a location close to the origin of replica-
tion (71–73). The ori-proximal location of the four pneu-
mococcal rRNA loci results in a higher gene copy num-
ber of rRNAs in fast-growing cells, such as in C+Y, as a
direct consequence of the increase in replication initiation
frequency. Indeed, we find that, in general, constitutively
expressed genes located close to the origin of replication
demonstrate higher expression under fast growth (24,71).

Condition-responsive expression of pneumococcal genes

Next, we clustered genes based on TPM-normalized ex-
pression values (52,74) in order to identify relevant clusters
that would indicate condition-responsive expression. Do-
ing this, we recovered a 19-gene cluster that was respon-
sive to the temperature increase between transfers. Temper-
ature is one of the major physicochemical properties in our
model, ranging from room temperature, 30, 37 and 40◦C
across infection-relevant conditions. For example, we ob-
served a high-fold change of the cluster compared to other
genes when comparing CSFMC to FEVER, representing
the shift from 37 to 40◦C (Figure 4A). We also noticed a
similar fold change when comparing NMC growing at 30◦C
to LMC, BMC and CSF-MC growing at 37◦C. In the com-
parison between NMC (at 30◦C) to transmission at 20◦C
(trans � NMC), we did not detect appreciable upregula-
tion of this cluster. The absence of upregulation can also be
observed in the comparison between C+Y (37◦C) to C+Y
� NMC (30◦C) and in comparison between BMC (37◦C)
to BMC � C+Y (37◦C). Members of the heat-responsive
cluster include genes encoding well-known heat-shock pro-
teins, hrcA-grpE-dnaK-dnaJ and groESL, and genes encod-
ing components of the proteolytic Clp complex, clpL, clpP
and clpC. Other heat-responsive members include ctsR (in
the same operon as clpC), SPV 2171, (in the same operon as
hrcA), glnQ2 (encoding a glutamine ATP-binding cassette
(ABC) transporter), cbpA (encoding choline binding pro-
tein A), SPV 2019-20 (pneumococcal two component sys-
tem) and thiXYZ-SPV 2027 (thiamin ABC transporter).

Next, we performed motif enrichment analysis on the
upstream regions of the above-mentioned operons and re-
covered the CtsR-binding site, which preceded five operons
across the genome (Figure 4B). This common binding site
for a regulator of heat-shock genes indicates that the ex-
pression levels of these genes are all controlled by the same
transcriptional signals, meaning that they are highly inter-
related. The identified motif is very similar to the predicted
orthologous motif in closely related species except for the
strong presence of one thymine (T) preceding the reported
motif (75). Four of the five operons, clpP, clpL, ctsR-clpC
and groESL, belong to the 19 gene cluster of temperature-
responsive genes, which also contains the HrcA regulon.

Lastly, the monocistronic fifth operon is constituted by clpE
and also has a CtsR-binding site. However, it did not cluster
with the heat-responsive genes (Figure 4C) and has a rather
stable constitutive expression across the conditions. While
the promoter regions of all five operons contain recognition
sites for both CtsR and RpoD (�A), the primary sigma fac-
tor during growth, we speculate that the position of these
sites relative to each other determines the efficiency of CtsR
control. Indeed, these sites do not overlap in the promoter
of clpE (see Figure 4C), thereby potentially limiting the ef-
fect size of CtsR-mediated repression and derepression. Ad-
ditionally, the groESL operon contains an HrcA-binding
site in addition to the RpoD and CtsR sites. Together, these
analyses show that, aside from highly conserved heat-shock
proteins, S. pneumoniae D39V activates specific genes in ele-
vated temperature, including those encoding virulence fac-
tor CbpA and proteins with as of yet unknown function,
SPV 2027 and SPV 2171.

Additionally, we analyzed genome-wide expression val-
ues (TPM) to discover genes that were upregulated in only
one condition. A functional enrichment analysis (hyperge-
ometric test) revealed that several ABC transporters were
enriched in the subsets of condition-specific genes. The ex-
pression of genes encoding two sugar transporter com-
plexes, malXCD, transporting maltose/maltodextrin, and
msmEFG, transporting multiple sugars, is specific to one
condition. While malXCD is strongly upregulated 30 min
after the infection of A549 cells, msmEFG is activated most
strongly in NMC and to some degree in LMC and C+Y
� NMC (Figure 5A). The strong activation of malXCD
can be attributed to the presence of host-derived sug-
ars (26). On the other hand, msmEFG, along with agaN
(encoding �-galactosidase) is under the control of CcpA,
which in turn is regulated by the intracellular levels of
glucose found in low levels in the nose-mimicking and
lung-mimicking mediums. Furthermore, the expression of
genes encoding the branched-chain amino acid (BCAA)
transporter, livFGMHJ, is increased in infection conditions
at 30 and 60 mpi, and this expression can be partly ex-
plained by the presence of a CodY-binding site and the pres-
ence of host-derived leucine, isoleucine and valine. Interest-
ingly, an oligopeptide ABC transporter, appABCD, is acti-
vated upon the transfer between C+Y to NMC (C+Y �
NMC). While the level of bovine serum albumin as source
of oligopeptides in the two conditions is comparable (0.73
g/l in C+Y and 1 g/l in NMC), the major difference be-
tween these two conditions is the carbon source, glucose
in C+Y and N-acetylglucosamine in NMC. A closer in-
spection of the immediate upstream region of appABCD re-
vealed that aside from an RpoD site, the operon is also pre-
ceded by a CcpA site (Figure 5B). To investigate appABCD
expression and its response to different carbon sources, we
transcriptionally fused luc behind appD. Three different
carbon source compositions were studied in a C+Y back-
ground: glucose, N-acetylglucosamine and an equimolar
combination of glucose and N-acetylglucosamine. Growth
was slightly affected by changes in the carbon source and
appABCD expression was varied, repressed in the pres-
ence of glucose and upregulated in increasing levels of N-
acetylglucosamine, indicating that CcpA regulates the tran-
scription of this oligopeptide transporter. Indeed, a previ-
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Figure 4. Temperature-responsive genes. (A) A cluster containing 19 genes was recovered from the clustering analysis based on the TPM values across 22
conditions. Comparisons were selected that demonstrate the fold change of cluster members (log2) in orange as compared to those of other genome-wide
genes in light blue. Comparison 1 is CSFMC to FEVER; 2 is NMC to NMC � LMC; 3 is NMC to NMC � BMC; 4 is NMC to NMC � CSFMC; 5 is
NMC to Trans, 5 min; 6 is C+Y to C+Y � NMC; and 7 is BMC to BMC � C+Y. (B) Motif enrichment analysis between 60 and 10 nts upstream of the
transcription start sites of the six-membered operons resulted in a 20-nt wide CtsR-binding site, CTTGACHTTTTCTGACCAAG. (C) A genome-wide
search for CtsR sites recovered four operons with a reported CtsR site that belonged to the original 19-gene cluster and one other gene, clpE. CtsR sites
overlap with RpoD sites, and groESL expression is co-regulated by HrcA. *clpE is preceded by non-overlapping RpoD- and CtsR-binding sites.

ous array-based study also suggested the operon to be part
of the CcpA regulon (66).

Assembly of genome-wide correlation values to generate a co-
expression matrix

To facilitate the identification of operon structure and reg-
ulons, we created a co-expression matrix based on the fold
changes in expression levels between the conditions. First,
we exhaustively compared genome-wide fold changes be-
tween every two conditions of the 22 infection-relevant con-
ditions. Next, we calculated the dot-product of the vector
containing all the fold changes of gene 1 with the vector
containing all the fold changes of gene 2 (a, non-normalized
correlation value). Similarly, we determined the self-dot-
products of gene 1 (b) and gene 2 (c). A normalized correla-
tion value was obtained by calculating the ratio of the non-
normalized value (a) to the geometric mean of the self-dot-
products (b and c). We then mapped this correlation value
according to the genomic positions of the original genes
(Figure 6A; ‘Materials and Methods’ section). Previously,
a similar method was exploited to generate a co-expression
matrix across different eukaryotic species to recover genetic
modules (76). The maximum correlation value, including
self-correlation, is 1, and the determined correlation values
range from −0.97 to 1.

Around the matrix diagonal, we observed blocks of
highly correlated genes, indicating their co-expression and
proximity. These proximity blocks are referred to as ‘puta-
tive operons’ and are used as input for further analysis (28).
In particular, the well-known cps operon (77) can be ob-
served in the co-expression matrix, in which 16 consecutive
genes are co-expressed as a single operon (Figure 6B, inset).
In contrast, the correlation values between members of the
cps operon and genes either upstream or downstream of the
locus are considerably lower.

In addition to belonging to the same operon, co-
expression can be mediated by shared expression-regulatory
properties. Regulatory proteins typically interact with the
promoter regions of regulated genes and identifying groups
of genes that are regulated by the same regulatory protein

(or RNA) are of particular interest in the characterization
of the pneumococcal response to a changing environment.
From the matrix, we recovered 46 features (in 26 operons)
that are highly correlated to dprA, a member of the ComX
regulon. Motif-enrichment analysis on the 50-nt region up-
stream of the corresponding 26 start sites resulted in a 28-nt
motif (Figure 6C) that closely matched the ComX-binding
site as previously reported (78). Furthermore, we clustered
pneumococcal genes based on their normalized expression
values (TPM) and recovered 25 clusters (74,79). The first
cluster, cluster 0, is a non-modular cluster that contains all
the genes that did not fit into any of the other clusters. This
cluster can therefore be considered as a random control.
When we plotted the correlation values of every set of two
genes within each cluster, we observed a bias toward higher
correlation values in all clusters except for the non-modular
cluster (Figure 6D). As an additional control, we selected
120 random genes divided into three groups and plotted the
correlation values within the groups. There, we observed a
truly random distribution of correlation values in all groups
(Supplementary Figure S3A).

Lastly, we hypothesized that a pair of genes with strong
correlated expression across infection-relevant conditions
are likely to share a cellular function. We concluded that
the co-expression matrix represents a simple network of
genome-wide expression profiles that reveal meaningful
transcriptomic responses to a changing environment. More-
over, by comparing gene expression profiles across a wide
range of conditions, direct and indirect regulatory connec-
tions between genes can be unveiled. On the other hand, the
co-expression matrix also has the potential to elucidate neg-
ative regulators indicated by strong negative correlation val-
ues with their target genes. Unlike previous reports (76,80),
the co-expression matrix that we describe here does not de-
compose pneumococcal genes into clusters of co-expressed
genes. Rather, by extracting correlation values between a
gene against all pneumococcal genes, we can ‘fish’ for co-
expressed genes to generate starting hypotheses and further
assist in the design of downstream experiments to elucidate
the cellular function of hypothetical gene(s).
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Figure 5. Condition-specific gene expression. (A) ABC transporters are
strongly over-represented among condition-specific genes. The expression
of malXCD, which encodes the maltose/maltodextrin transporter, peaks
in Infection, 30 mpi, while msmEFG, which encodes a multi-sugar trans-
porter, is highly expressed in NMC and to a lesser degree in LMC, C+Y
� NMC and FEVER. Infection conditions (30 and 60 mpi) incite the
expression of livFGMHJ, which encodes the BCAA transporter, and the
transfer between C+Y to NMC (C+Y � NMC) activates the expression
of appABCD, encoding an oligopeptide transporter. Purple indicates high
expression and green indicates low expression, as indicated by the leg-
end above the graph. (B) The upstream region of appABCD contains the
RpoD- and CcpA-binding sites. luc is transcriptionally fused after appD.
(C) While growth is barely affected by different carbon sources, the lu-
ciferin signal increases in the presence of N-acetylglucosamine. Glc: glu-
cose; Comb.: equimolar combination of glucose and N-acetylglucosamine;
GlcNAc: N-acetylglucosamine.

Exploiting the matrix to reveal a new member of the compe-
tence regulon

Two-component regulatory systems (TCSs), consisting of a
sensor histidine kinase that senses an environmental stim-
ulus, and a cognate response regulator that controls gene

expression after activation by the kinase, are essential for
adapting to the microenvironment and fine-tuning gene ex-
pression in the pneumococcus (81,82). ComDE, the best-
described TCS, is controlled by a quorum-sensing mecha-
nism and regulates competence, or X-state, which in turn
is responsible for the expression of ∼100 genes and a wide
range of phenotypic changes (82,83). By extracting correla-
tion values of all pneumococcal genes, we recovered genes
strongly correlated with comE, which encodes the TCS
DNA-binding response regulator. Specifically, we identi-
fied 26 comE-associated genes with correlation values above
0.8. ComE autoregulates its own expression along with the
expression of comC1 (SPV 2065) and comD (SPV 2064),
which belong to the same operon and indeed correlate
strongly with comE. Furthermore, other known members of
the ComE regulon, such as comAB (SPV 0049-50), comW
(SPV 0023) and comM (SPV 1744), belong to the same
cluster.

Interestingly, SPV 0391, encoding a conserved hypothet-
ical protein, was included in the group. SPV 0391 has not
been previously reported as part of the competence regulon
in array-based pneumococcal competence studies (38,39).
Furthermore, comE-associated genes are not localized in a
specific genomic location, but are spread out throughout
the genome (Figure 7A), ruling out the effect of genomic lo-
cation. Expression values of comCDE and SPV 0391 across
infection-relevant conditions demonstrated a strong corre-
lation between the genes (Figure 7B). In the promoter re-
gion of SPV 0391, we observed a ComE-binding site con-
sisting of two ComE-boxes, which suggests direct regulation
by ComE. To study the expression of SPV 0391 and the re-
sponsiveness of the identified ComE site, we transcription-
ally inserted luc downstream of SPV 0391, immediately fol-
lowed by the pseudogene ydiL (SPV 2157), which contains
a frameshift mutation after position 165 and is unlikely
to be translated into a functional protein. Importantly, no
terminators or additional transcription start sites were de-
tected between SPV 0391 and ydiL, suggesting they form an
operon together. A small hypothetical protein, SPD 0392,
was previously annotated within the ydiL coding region, so
we chose to integrate luc downstream of SPD 0392 to avoid
potential downstream effects (Figure 7C). We compared the
luminescence signal in this strain to that of a D39V deriva-
tive that expressed luc transcriptionally fused to the 3′-end
of comCDE (24).

Exogenous addition of 100 ng/�l of CSP-1, to stimu-
late competence, stimulated luciferase activity in both re-
porter strains (Figure 7C and Supplementary Figure S3B).
Although the luciferase signal from SPV 0391 was an order
of magnitude lower than the luminescence driven by com-
CDE, the signal profiles were very similar. The difference in
signal strength may stem from a weaker promoter driving
SPV 0391 than comCDE.

We disrupted SPV 0391 to elucidate its role in pneumo-
coccal competence and found that deletion of this con-
served feature did not affect growth in C+Y or the ex-
pression profiles of luciferase downstream of comCDE and
ssbB, a member of the ComX regulon (not shown). Lastly,
transformation efficiency in the deletion strain was not sig-
nificantly different from that of the parental strain. Thus,
while SPV 0391 is under the control of ComE and part of
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Figure 6. Assembly of the co-expression matrix from the correlation values of every two pneumococcal genes. (A) The exhaustive fold changes calculated
for every set of two genes are converted into a correlation value: first, the dot-product between two genes (a, orange) and the dot product of each gene with
itself (b and c, blue) are calculated. The correlation value is the ratio between a and the geometric mean of b and c. Values were assembled by the genomic
coordinates of the target genes. (B) The co-expression matrix as a visualized gene network. Self-correlation values are 1 by definition and correlation values
were plotted according to the genomic positions of target genes. Purple and green indicate positive and negative correlation values between two genes,
respectively. Color intensities represent correlation strength. Blocks of highly correlated genes close to the matrix diagonal indicate operon structures, for
example for the cps operon (inset). (C) An enriched promoter motif recovered from genes highly correlated with dprA (SPV 1122) matches the consensus
ComX-binding site (78). (D) Pneumococcal genes were clustered into 25 clusters based on TPM. Then, correlation values for every two genes within each
cluster were plotted. Cluster 0 is non-modular, and its correlation values can be considered as random. Within-cluster values showed a clear trend toward
higher correlation (purple).

the pneumococcal competence regulon, we could not de-
termine its role in pneumococcal competence. Indeed, re-
cent work has shown that the protein encoded by SPV 0391
(named BriC) does not play a role in transformation, but
rather promotes biofilm formation and nasopharyngeal col-
onization (bioRxiv: https://doi.org/10.1101/245902). The
fact that we could identify SPV 0391 (briC) as a bona fide
member of the ComE regulon, while array-based technol-

ogy could not, demonstrates the advantages of RNA-seq
over hybridization technology (38,39).

Development of an interactive data center to explore gene ex-
pression and correlation

To enable users to easily mine the rich data produced
here, we developed an interactive data center accessible
from https://veeninglab.com/pneumoexpress, where users
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Figure 7. The co-expression matrix reveals a new competence-regulated
gene. (A) The gene encoding the pneumococcal response regulator, ComE,
was used to recover 26 highly correlated features (orange diamonds). The
group is mainly populated by known members of the ComE regulon, ex-
cept for SPV 0391, a conserved hypothetical gene not previously reported
to be part of the competence regulon. (B) Centered regularized log as ex-
pression values of SPV 0391 (orange) and comCDE (shades of blue) were
plotted against the shortest tour of infection-relevant conditions. Expres-
sion values of the four genes closely clustered together. (C) Genomic envi-
ronment of SPV 0391 with two preceding ComE boxes. SPV 0391 shared
an operon structure with a pseudogene, ydiL. (D) luc was transcription-
ally fused downstream of SPV 0391 or comCDE to characterize their ex-
pression profiles with and without the addition of exogenous CSP-1 (100
ng/�l). The addition of exogenous CSP-1 incited similar luminescence pro-
files in SPV 0391-luc and in comCDE-luc strains.

can easily extract expression values and fold changes of a
gene of interest, as well as quantitative information on how
its expression profile correlates with that of other genomic
features (Figure 8). As a proof of principle, in addition to
the competence regulon, we demonstrated results obtained
by examining the PyrR regulon. Traditional transcription
factors bind to the promoter region of a DNA molecule and
the confident prediction of all their binding sites is challeng-
ing. PyrR, on the other hand, controls the expression of its
regulon through an interaction with an RNA switch (84,85).
We identified four of these RNA switches (in front of uraA,
pyrFE, pyrRB-carAB and pyrKDb) that are predicted to reg-
ulate the expression of nine genes based on putative operon
structures (28). As expected, the eight other genes showed a
strong correlation with pyrR (>0.9).

DISCUSSION

Extensive mineable transcriptome databases exist only for
a few model bacteria, such as B. subtilis (33,86), S. au-
reus (34,87), Escherichia coli (88,89) and Salmonella enter-
ica serovar Typhimurium (36), and have been proven to be
invaluable for the research community. Here, we set out to
map the transcriptomic landscape of the important oppor-
tunistic human pathogen S. pneumoniae. In this study, we
coupled exposure to wide-ranging and dynamic infection-
relevant conditions (Table 2 and Figure 1A) with high-
throughput RNA-seq and generated a compendium of the
pneumococcal transcriptome. This use of infection-relevant
conditions is similar to what has been successfully applied
to other bacteria, including B. subtilis (33), S. enterica (36),
S. aureus (34) and Helicobacter pylori (35) to incite genome-
wide transcriptional responses under wide-ranging physic-
ochemical conditions. Our work highlights key facts about
the survival techniques utilized by S. pneumoniae, such as
the substantial transcriptional regulation of sugar trans-
porters (Figure 5A; Supplementary Tables S3 and S4 on
‘Dynamic Genes’), mainly in response to the presence of
alternative sugars or in the absence of glucose and medi-
ated by the transcription factor CcpA. These observations
indicate the necessity of acquiring a carbon source for pneu-
mococcal in-host survival as shown in several in vivo exper-
iments (66,90).

Exposure to conditions relevant to the natural lifestyle
of various bacteria has been reported to incite genome-
wide transcriptional responses (33,35,91,92). Here, we show
that under a set of varied infection-relevant conditions,
there was a subset of genes that was constantly highly ex-
pressed, while there was no gene that was always lowly
expressed––highlighting the saturated and dynamic nature
of the pneumococcal transcriptome (Figures 3B, 3D and
5A). Previously, we reported that all pneumococcal genes
were expressed during early infection (26), and this was
again confirmed in this study because none of the genes
were consistently silent.

The pneumococcus occupies a rich and diverse niche of
the respiratory tract (13). While we tried to estimate the rele-
vant conditions for the pneumococcus during its pathogenic
lifestyle, other important physicochemical parameters that
we did not include in the infection models, such as the
concentration of metal ions, play important roles in sur-
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Figure 8. An intuitive interactive database for accessing expression and correlation data. (A) Users can specify their gene(s) of interest in the field ‘Genes’.
Other settings, including normalization method, color scales and graph dimensions, can be adjusted under ‘Advanced options’. Multiple genes of interest
are queried separated by commas. The immediate genomic environment of the gene(s) of interest can be explored in PneumoBrowse by clicking the locus
tag in the result table. (B) Target expression values are plotted against infection-relevant conditions, and the values can be downloaded for further analysis.
The example shown consists of three competence genes. Hovering on a point reveals more information. To remove the information box, simply click on
the point or hover to another point. (C) The co-expression matrix can be mined by a simple inquiry of a gene of interest (general correlation), while specific
correlation provides the correlation value between two genes of interest. Additionally, users can specify a desired threshold for co-expression values under
‘Advanced options’. (D) Correlation values to pyrR, noting that self-correlation is 1. Here, the genomic environment can also be browsed by clicking the
locus tag in the result table.
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vival (93) and virulence (94). Moreover, the pneumococcus
shares a busy ecosystem in the respiratory tract with other
bacteria, fungi and viruses (13). Activities of other residents
may be detrimental to the pneumococcal survival, as in the
case of Haemophilus influenzae recruiting host cells to re-
move S. pneumoniae (95). On the other hand, pneumococcal
interactions with influenza viruses yield bountiful nutrients
to support pneumococcal expansion (96). Dual transcrip-
tomics studies involving the interaction with other relevant
species will offer interesting insights into pneumococcal
gene expression and will greatly enhance our understand-
ing of pneumococcal biology and pathogenesis (26,97).

Additionally, we have proposed a simple and straightfor-
ward manner for converting the dense and substantial se-
quencing data into a type of gene network that we call the
co-expression matrix (Figure 6). The matrix was assembled
by arranging correlation values between two genes by their
respective genomic locations, and its potential was demon-
strated by the elucidation of a new member of the ComE
regulon, called briC (SPV 0391) (Figure 7), indicating that
it can be a valuable tool for developing new hypotheses
regarding cellular pathways or gene functions. Neverthe-
less, downstream experiments should be performed to verify
these hypotheses (98). Lastly, we provide the comprehen-
sive and rich dataset to the research community by build-
ing a user-friendly online database, PneumoExpress (https:
//veeninglab.com/pneumoexpress), where users can easily
extract expression values and fold changes of a gene of in-
terest, as well as quantitative information on how its ex-
pression profile correlates with that of other genomic fea-
tures (Figure 8). By a simple click in the database, users
can explore the immediate genomic environment of genes
of interest in PneumoBrowse (28). In addition, the resources
assist efforts in comparative genomics and transcriptomics
for other bacteria. Finally, we invite other researchers to
harness these resources and generate their own hypotheses
to gain new insights into pneumococcal biology and, ulti-
mately, to identify novel treatment and prevention strategies
against pneumococcal disease.

DATA AVAILABILITY

The source code for the online compendium is available in
Zenodo, https://doi.org/10.5281/zenodo.1323601. Licensed
under Creative Commons Attribution-Non Commercial.
The transcriptomic datasets are available in the GEO
repository: accession number GSE108031. PneumoExpress
is hosted on two separate servers: http://pneumoexpress.
molgenrug.nl and https://veeninglab.com/pneumoexpress-
app.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We are grateful to V. Benes and B. Haase (GeneCore,
EMBL, Heidelberg) for their continuing support in se-
quencing; C.J. Albers, B. Jayawardhana, E.C. de Wit and
M.H. Silvis for many fruitful discussions; A. de Jong and

D. Pauka for bioinformatics support and A. Lun (Cancer
Research UK, Cambridge) for insightful recommendations
concerning rRNA analysis. We would like to thank the Cen-
ter for Information Technology of the University of Gronin-
gen for their support and for providing access to the Pere-
grine high-performance computing cluster. We appreciate
the following creators: Hyhyhehe, Misha Petrishchev, Al-
berto Gongora, Hea Poh Lin and Icon 54 for making their
cliparts freely available at thenounproject.com.

FUNDING

Swiss National Science Foundation [31003A 172861];
VIDI Fellowship, Netherlands Organization for Scientific
Research (NWO-ALW) [864.11.012]; JPIAMR, Nether-
lands Organisation for Health Research and Development
(ZonMW) [50-52900-98-202]; ERC Starting Grant 337399-
PneumoCell. Funding for open access charge: ERC Starting
Grant 337399-PneumoCell.
Conflict of interest statement. None declared.

REFERENCES
1. Troeger,C., Forouzanfar,M., Rao,P.C., Khalil,I., Brown,A.,

Swartz,S., Fullman,N., Mosser,J., Thompson,R.L., Reiner,R.C. et al.
(2017) Estimates of the global, regional, and national morbidity,
mortality, and aetiologies of lower respiratory tract infections in 195
countries: a systematic analysis for the Global Burden of Disease
Study 2015. Lancet. Infect. Dis., 17, 1133–1161.

2. Kassebaum,N.J., Arora,M., Barber,R.M., Bhutta,Z.A., Brown,J.,
Carter,A., Casey,D.C., Charlson,F.J., Coates,M.M., Coggeshall,M.
et al. (2016) Global, regional, and national disability-adjusted
life-years (DALYs) for 315 diseases and injuries and healthy life
expectancy (HALE), 1990–2015: a systematic analysis for the Global
Burden of Disease Study 2015. Lancet., 388, 1603–1658.

3. Wardlaw,T., Salama,P., Johansson,E.W. and Mason,E. (2006)
Pneumonia: the leading killer of children. Lancet., 368, 1048–1050.

4. Welte,T., Torres,A. and Nathwani,D. (2012) Clinical and economic
burden of community-acquired pneumonia among adults in Europe.
Thorax, 67, 71–79.

5. Henriques-Normark,B. and Tuomanen,E.I. (2013) The
pneumococcus: epidemiology, microbiology, and pathogenesis. Cold
Spring Harb. Perspect. Med., 3, a010215.

6. O Brien,K.L., Wolfson,L.J., Watt,J.P., Henkle,E., Deloria-Knoll,M.,
McCall,N., Lee,E., Mulholland,K., Levine,O.S., Cherian,T. et al.
(2009) Burden of disease caused by Streptococcus pneumoniae in
children younger than 5 years: global estimates. Lancet., 374,
893–902.

7. Miller,E., Andrews,N.J., Waight,P.A., Slack,M.P. and George,R.C.
(2011) Herd immunity and serotype replacement 4 years after
seven-valent pneumococcal conjugate vaccination in England and
Wales: an observational cohort study. Lancet. Infect. Dis., 11,
760–768.

8. Bosch,A.A.T.M., Levin,E., van Houten,M.A., Hasrat,R.,
Kalkman,G., Biesbroek,G., de Steenhuijsen Piters,W.A.A., de
Groot,P.-K.C.M., Pernet,P., Keijser,B.J.F. et al. (2016) Development
of upper respiratory tract microbiota in infancy is affected by mode
of delivery. EBioMedicine, 9, 336–345.

9. Bosch,A.A.T.M., van Houten,M.A., Bruin,J.P.,
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75. Derré,I., Rapoport,G. and Msadek,T. (1999) CtsR, a novel regulator
of stress and heat shock response, controls clp and molecular
chaperone gene expression in gram-positive bacteria. Mol. Microbiol.,
31, 117–131.

76. Stuart,J.M., Segal,E., Koller,D. and Kim,S.K. (2003) A
gene-coexpression network for global discovery of conserved genetic
modules. Science, 302, 249–255.

77. Wen,Z., Liu,Y., Qu,F. and Zhang,J.-R. (2016) Allelic variation of the
capsule promoter diversifies encapsulation and virulence in
Streptococcus pneumoniae. Sci. Rep., 6, 30176.

78. Luo,P. and Morrison,D.A. (2003) Transient association of an
alternative sigma factor, ComX, with RNA polymerase during the
period of competence for genetic transformation in Streptococcus
pneumoniae. J. Bacteriol., 185, 349–358.

79. Langfelder,P. and Horvath,S. (2012) Fast R functions for robust
correlations and hierarchical clustering. J. Stat. Softw., 46, i11.

80. Faith,J.J., Hayete,B., Thaden,J.T., Mogno,I., Wierzbowski,J.,
Cottarel,G., Kasif,S., Collins,J.J. and Gardner,T.S. (2007) Large-scale
mapping and validation of Escherichia coli transcriptional regulation
from a compendium of expression profiles. PLoS Biol., 5, e8.

81. Gomez-Mejia,A., Gamez,G. and Hammerschmidt,S. (2017)
Streptococcus pneumoniae two-component regulatory systems: The
interplay of the pneumococcus with its environment. Int. J. Med.
Microbiol., 308, 722–737.
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