180 research outputs found

    Plasmacellen en hun voorlopercellen

    Get PDF

    Unidirectional Reconstitution into Detergent-destabilized Liposomes of the Purified Lactose Transport System of Streptococcus thermophilus

    Get PDF
    The lactose transport protein (LacS) of Streptococcus thermophilus was amplified to levels as high as 8 and 30% of total membrane protein in Escherichia coli and S. thermophilus, respectively. In both organisms the protein was functional and the expression levels were highest with the streptococcal lacS promoter. Also a LacS deletion mutant, lacking the carboxyl-terminal regulatory domain, could be amplified to levels >20% of membrane protein. Membranes from S. thermophilus proved to be superior in terms of efficient solubilization and ease and extent of purification of LacS; >95% of LacS was solubilized with relatively low concentrations of Triton X-100, n-octyl-β-D-glucoside, n-dodecyl-β-D-maltoside, or C12E8. The LacS protein carrying a poly-histidine tag was purified in large quantities (~5 mg/liter of culture) and with a purity >98% in a two-step process involving nickel chelate affinity and anion exchange chromatography. The membrane reconstitution of LacS was studied systematically by stepwise solubilization of preformed liposomes, prepared from E. coli phospholipid and phosphatidylcholine, and protein incorporation at the different stages of liposome solubilization. The detergents were removed by adsorption onto polystyrene beads and H+-lactose symport and lactose counterflow were measured. Highest transport activities were obtained when Triton X-100 was used throughout the solubilization/purification procedure, whereas activity was lost irreversibly with n-octyl-β-D-glucoside. For reconstitutions mediated by n-dodecyl-β-D-maltoside, C12E8, and to a lesser extent Triton X-100, the highest transport activities were obtained when the liposomes were titrated with low amounts of detergent (onset of liposome solubilization). Importantly, under these conditions proteoliposomes were obtained in which LacS was reconstituted in an inside-out orientation, as suggested by the outside labeling of a single cysteine mutant with a membrane impermeable biotin-maleimide. The results are consistent with a mechanism of reconstitution in which the hydrophilic regions of LacS prevent a random insertion of the protein into the membrane. Consistent with the in vivo lactose/galactose exchange catalyzed by the LacS protein, the maximal rate of lactose counterflow was almost 2 orders of magnitude higher than that of H+-lactose symport.

    Redenen om uit een leesgroep te stappen

    Get PDF

    Measuring and Interpreting Nuclear Transport in Neurodegenerative Disease-The Example of C9orf72 ALS

    Get PDF
    Transport from and into the nucleus is essential to all eukaryotic life and occurs through the nuclear pore complex (NPC). There are a multitude of data supporting a role for nuclear transport in neurodegenerative diseases, but actual transport assays in disease models have provided diverse outcomes. In this review, we summarize how nuclear transport works, which transport assays are available, and what matters complicate the interpretation of their results. Taking a specific type of ALS caused by mutations in C9orf72 as an example, we illustrate these complications, and discuss how the current data do not firmly answer whether the kinetics of nucleocytoplasmic transport are altered. Answering this open question has far-reaching implications, because a positive answer would imply that widespread mislocalization of proteins occurs, far beyond the reported mislocalization of transport reporters, and specific proteins such as FUS, or TDP43, and thus presents a challenge for future research

    Traffic to the inner membrane of the nuclear envelope

    Get PDF
    Past research has yielded valuable insight into the mechanisms that regulate the nuclear transport of soluble molecules like transcription factors and mRNA. Much less is known about the mechanisms responsible for the transportation of membrane proteins to the inner membrane of the nuclear envelope. The key question is: does the facilitated transport of integral inner membrane proteins exist in the same way as it does for soluble proteins and, if so, what is it used for? Herein, we provide an overview of the current knowledge on traffic to the inner nuclear membrane, and make a case that: (a) known sorting signals and molecular mechanisms in membrane protein biogenesis, membrane protein traffic and nuclear transport are also relevant with respect to INM traffic; and (b) the interplay of the effects of these signals and molecular mechanisms is what determines the rates of traffic to the INM

    Redenen om uit een leesgroep te stappen

    Get PDF

    A FRET-based method for monitoring structural transitions in protein self-organization

    Get PDF
    Proteins assemble into a variety of dynamic and functional structures. Their structural transitions are often challenging to distinguish inside cells, particularly with a high spatiotemporal resolution. Here, we present a fluorescence resonance energy transfer (FRET)-based method for continuous and high-throughput monitoring of protein self-assemblies to reveal well-resolved transient intermediate states. Intermolecular FRET with both the donor and acceptor proteins at the same target protein provides high sensitivity while retaining the advantage of straightforward ratiometric imaging. We apply this method to monitor self-assembly of three proteins. We show that the mutant Huntingtin exon1 (mHttex1) first forms less-ordered assemblies, which develop into fibril-like aggregates, and demonstrate that the chaperone protein DNAJB6b increases the critical saturation concentration of mHttex1. We also monitor the structural changes in fused in sarcoma (FUS) condensates. This method adds to the toolbox for protein self-assembly structure and kinetics determination, and implementation with native or non-native proteins can inform studies involving protein condensation or aggregation

    Redenen om uit een leesgroep te stappen

    Get PDF
    Stichting Senia is een stichting die leesgroepen organiseert voor (voornamelijk) senioren. In dit onderzoek is aandacht besteed aan oud-deelnemers van de stichting die besloten uit een leesgroep te stappen: wat was hun motivatie en hoe kan Senia hier rekening mee houden? Aan de hand van een online anonieme enquête is gestopte deelnemers gevraagd hoe zij hun deelname aan een leesgroep hebben ervaren en wat meespeelde in de keuze om met de leesgroep te stoppen. Tijd speelde hierbij vaak een rol, daarnaast gaven de respondenten aan dat vooral problemen binnen hun leesgroep, een te laag of hoog (lees)niveau van de leesgroep of het werken met de leeswijzer redenen waren dat deelname aan de leesgroep tegenviel. Door middel van een SWOT-analyse worden aanbevelingen gedaan waarmee Senia kan proberen meer deelnemers te behouden
    • …
    corecore