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Abstract: Transport from and into the nucleus is essential to all eukaryotic life and occurs through
the nuclear pore complex (NPC). There are a multitude of data supporting a role for nuclear transport
in neurodegenerative diseases, but actual transport assays in disease models have provided diverse
outcomes. In this review, we summarize how nuclear transport works, which transport assays are
available, and what matters complicate the interpretation of their results. Taking a specific type of
ALS caused by mutations in C9orf72 as an example, we illustrate these complications, and discuss
how the current data do not firmly answer whether the kinetics of nucleocytoplasmic transport are
altered. Answering this open question has far-reaching implications, because a positive answer would
imply that widespread mislocalization of proteins occurs, far beyond the reported mislocalization of
transport reporters, and specific proteins such as FUS, or TDP43, and thus presents a challenge for
future research.

Keywords: nuclear transport; nuclear pore complex; nuclear transport receptor; C9orf72;
amyotrophic lateral sclerosis (ALS)

1. Introduction
1.1. Nucleocytoplasmic Transport

Nucleocytoplasmic transport (NCT) occurs through nuclear pore complexes (NPCs),
large protein complexes embedded in the nuclear membrane. NPCs facilitate and regulate
the import and export of proteins and RNA between the nucleus and cytoplasm. Small
proteins will rapidly diffuse through the NPC, but the passage of larger molecules is
hindered by the NPC’s permeability barrier [1,2]. The association of proteins or RNAs
with specific importins, exportins, and transportins, grouped together as nuclear transport
receptors (NTRs), facilitates the passage of macromolecules, large and small, across the
barrier (Figure 1).

The NPC is made up of proteins called nucleoporins (Nups) that build the cylindrical
structure embedded in the nuclear membrane. FG-Nups containing phenylalanine-glycine
(FG) repeats constitute roughly half of the mass of the NPCs [3] with about 200 copies of
FG-Nups found in each pore [3,4]. The precise nature of the permeability barrier formed
by the FG-Nups is still under debate, but what is clear is that the NTRs associate directly
with the FG-Nups, even with specificity to certain Nups over others [5–10], to facilitate
the passage of NTR–cargo complexes. Additionally, a pool of importin-β functions as
a stable component of the NPC’s permeability barrier [11]. The differential localization
of NPC-associated proteins in a single yeast nucleus suggests that NPCs may even have
specialized transport functions [12].

In baker’s yeast, there are 19 known NTR [13–16], whereas in human cells, 30 NTRs [17]
are identified. The substrate specificity of some, but not all NTRs has been mapped, and
jointly they bind a large and diverse group of cargoes, while some redundancies exist [18].
The importin-β superfamily is the largest class of NTRs; they can either directly bind to
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their cargo, or via an adaptor protein, an importin-α isoform [19]. Exportins include CRM1,
LOS1, and the MEX67-MTR2 (or human TAP/p15) complex for mRNAs and tRNAs [20],
MSN5 for tRNAs, and CAS/CSE1 specifically exports Impα/Kap60 [21]. Of note, while
general protein export is mediated only by the major exportin CRM1, many importins co-
operate for general protein import. NTRs bind their cargoes through a nuclear localization
signal (NLS) or a nuclear export signal (NES) encoded on a cargo molecule.
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Figure 1. Nucleocytoplasmic transport can be measured with fluorophore-tagged transport reporters.
(A) GFP tagged with an NLS accumulates in the nucleus owing to constant active import, which is
faster than the passive leak in the opposite direction. (B) GFP tagged with an NES accumulates in
the cytosol owing to constant active export, which overpowers passive influx. (C) GFP tagged with
both an NLS and NES sequence accumulates depending on the strongest signal, as it is both actively
imported and exported and passively diffuses across the nuclear pore. Passive diffusion (=influx and
efflux) is dependent on the concentration gradient of the reporter, the number of NPCs, and their
permeability.

Ran, a member of the Ras family of small GTPases, is in its GTP bound state in the
nucleus and its GDP bound state in the cytosol. This gradient functions to ensure that the
cargoes are accumulated in the nucleus or cytosol by promoting the removal of cargo from
importins and the loading of cargo to exportins [22–24]. Whereas importins bind to either
the NLS of their cargo or to the RanGTP, exportins bind to both the NES of their cargo and
the RanGTP cooperatively. Therefore, cargo release from importins depends on RanGTP
binding, while cargo release from exportins needs RanGTP hydrolysis. RanGTP levels in the
nucleus are maintained by the guanine nucleotide exchange factor RCC1 or RanGEF. RanGTP
is converted to RanGDP in the cytoplasm by the GTPase-activating protein RanGAP. NCT
is thus an interplay between the NPCs, with a number of different NTRs recognizing cargo
through sorting signals and a gradient of Ran in its GTP or GDP bound state.

1.2. Amyotrophic Lateral Sclerosis (ALS)

ALS is a neurodegenerative disease that affects neurons in the brain and spinal cord.
Amyotrophy is the degeneration of spinal motor neurons, which leads to denervation and
muscle wasting. Lateral sclerosis refers to the scarring (sclerosis) of the lateral axons, which
control voluntary movement [25]. In most cases, the cause for ALS remains unknown, but
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5–10% of ALS cases are caused by autosomal dominantly inherited mutations [26], of which
almost 40% in Caucasians are in C9orf72 [27]. Specifically, a G4C2 hexanucleotide is repeated
up to thousands of times in C9-ALS patients [28,29], and translated via repeat-associated
non-AUG (RAN) translation. This non-canonical initiation of translation allows elongation
of a repeat sequence in the absence of an AUG starting codon, in multiple reading frames,
thus leading to multiple dipeptide repeat proteins (DPRs) [30]. For C9orf72, the sense
RNA encodes glycine-alanine (GA), glycine-proline (GP), and glycine-arginine (GR) repeat
proteins. The antisense transcript produces proline-arginine (PR), glycine-proline (GP),
and proline-alanine (PA) repeat proteins [31,32]. On a molecular level, C9-ALS disease is
thus associated with multiple disease-related biomolecules, DNA, RNA, and DPRs. Hence,
C9-ALS models introduce the G4C2 repeat DNA, or express or inject a single DPR of a
certain length.

1.3. Nucleocytoplasmic Transport and C9orf72 ALS

A growing body of work suggests that changes in components of the nucleocytoplas-
mic transport machinery are related to neurodegenerative diseases (reviewed in [33–43]),
but also specifically ALS. Firstly, the C9orf72 protein was found to interact with both
importin-β1 and Ran-GTPase [44]. Moreover, effects on toxicity were reported; it was found
that overexpression of RanGAP reduces toxicity of G4C2 repeats [45], downregulation of
NTRs enhances G4C2 toxicity [46], and toxicity caused specifically by PR50—50 repeats
of PR—is reduced by NTR overexpression [47]. An overview of NCT related genes that
modify toxicity can be found in the accompanying review by Vanneste et al [48]. Further-
more, GA50 was reported to bind RanGAP1 in cytoplasmic inclusions [49], and poly-PR
and -GR can directly bind to importin-β [50]. Moreover, the nuclear and cytoplasmic
distributions of major protein components of NPCs were found to be altered in ALS [51].
Mislocalization or aggregation of NTRs has also been linked to C9-ALS (reviewed by
Hutten and Dormann [39]) and mislocalization of NTRs and Nups has been shown in
ALS post-mortem tissue and ALS models (reviewed in the accompanying review [48]. PR
repeats are reported to directly bind to nuclear pores [52]. Further data linking altered NCT
to C9-ALS include the following: nuclear RNA retention [46,52], mislocalization of Pom121
by poly-GA [49], reduced nuclear RCC1 (RanGEF) in C9orf72-carrier induced neurons [47],
and increased cytoplasmic localization of neuronal RNA-binding protein Elav [53]. Ran-
GAP was also found to be mislocalized in C9orf72-carrier induced neurons [47], but not in
other models of C9orf72-associated neurodegeneration [47,54–56]. Thus, there is evidence
from different model systems and experimental methods that nucleocytoplasmic transport
components—NTRs, RanGAP, RanGEF, and Nups—are impacted in C9-ALS.

From the plethora of effects on NCT components, one would expect that the kinetics
of NCT is impacted in C9-ALS. Establishing if the transport kinetics of NPCs in C9-ALS is
altered is important, as a positive answer would suggest a common cause in ALS, i.e., mis-
localization of many proteins, including ALS-related FUS and TDP43. A negative answer
would suggest the NCT machinery is a robust system, and not causal to the phenotype
of C9-ALS. This question has indeed been addressed in seven studies [45,50,52,55,57–59],
which are summarized in Table 1; we included only those studies that make use of C9ALS
models and mobile reporters. We did not include papers with full length proteins, as their
localization may be impacted by other processes, such as retention. Table 1 shows the used
reporters (i.e., usually a fluorescent protein with a specific NLS and/or NES sequence), the
NTRs associated with the used NLS/NESs (importin-α/β complex, TNPO1 (Kapβ2), and
CRM1), the C9-ALS model (i.e., introduction of repeat DNA, or expression or injection of
a specific DPR), and the cell model. From a brief look at the joint data, it is not obvious
if transport kinetics are altered in C9-ALS, as some experiments report changes, while
others do not. To understand what one may conclude from the results from these diverse
experimental setups and why there are seemingly inconsistent outcomes, we next discuss
commonly used transport assays to then come back to the nuclear transport process in
more detail to illustrate the complications in interpreting their outcomes.
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Table 1. Transport studies of C9-ALS.

Summary of Experimental Setup and Results of Nuclear Transport Studies in C9-ALS Models

Reporter
(Localization in Wildtype) NTR Model

Effect of Indicated C9-ALS DNA Repeats or DPRs on Transport Reporter
Reference

Changed Unchanged
(A) NLSSv40-tdTomato-NESRev

(nuclear) (G4C2)n expression in C9-ALS iPSNs Recovery of nuclear fluorescence after FRAP is decreased

(B) NLSSv40-NESPKI-GFP
(nuclear)

(C) NLSRanGAP-∆NESPKI-GFP
(nuclear)

(G4C2)30
expression in Drosophila

salivary gland cells
Nuclear intensity is decreased

(D) NLSSv40-NESPKI-GFP
(nuclear excluded)

Impα/β complex CRM1

(E) NLSSv40-∆NESPKI-GFP
(cellular diffuse)

(G4C2)30
expression in motor neurons Nuclear exclusion is increased

Zhang 2015 [45]

(F) GFP-NLSSv40-NESPKI
(nuclear excluded) Impα/β complex CRM1 PR20 peptide injection in U2OS cells Nuclear intensity after export inhibition by Leptomycin B is decreased (PR20

dose-dependent)
Shi 2017 [52]

(G) BSA-NLS(Sv40)n
(nuclear)

Impα/β complex DPR peptide injection in permeabilized HeLa
cells

Nuclear intensity is decreased
(PR20 dose-dependent) Nuclear intensity is unchanged (PG20/PA20)

(H) RFP-NLSTDP
(nuclear) Impα/β complex Cytoplasmic intensity (C/T) is increased (more so with GA149-GFP, than with

GA149-GFP-NLS) Cytoplasmic intensity (C/T) is unchanged (GFP-GR149/PR175-GFP) †

(I) RFP-NLSPY (hnRNPA1)
(nuclear)

TNPO1

DPR expression in HeLa cells

Cytoplasmic intensity (C/T) is unchanged (GA149/GR149/PR175)
Khosravi 2017 [57]

NESRev-tdTomato-NLSSv40 Impα/β complex CRM1 C9-ALS fibroblasts Nuclear accumulation (N/C) is decreased Chou 2018 [55]
(J) NLSSv40-mNeon Green2x-NESPKI

(cytoplasmic) Impα/β complex CRM1 Nuclear accumulation (N/total) after export inhibition by Leptomycin B
is unchanged (PR20/GR20)

(K) NLSPY (FUS)-mNeon Green2x-NESPKI *
(nuclear)

TNPO1
CRM1

DPR peptide injection in HeLa Kyoto cells
Nuclear accumulation (N/total) after import inhibition by MGM9 is

unchanged (PR20/GR20)

(L) NLSSv40-mNeon Green2x-NESPKI
(nuclear)

††
Nuclear accumulation (N/total) after export inhibition by Leptomycin B is

increased (PR100)

Nuclear accumulation (N/total) after export inhibition by Leptomycin B
is unchanged (PA100 /GR100 /GA100)

(M) NLSc-myc-GFP2x-NESikβ2
(nuclear)

mCherry-DPR lentiviral expression in Hela
Kyoto cells

N/total unchanged (PA100/GA100/GR100/
PR100)

(N) NLSSv40-mNeon Green2x-NESPKI
(cytoplasmic)

Impα/β complex CRM1

mCherry-DPR lentiviral expression in SH-Sy5y
neuronal cells and iPSC motor neurons

Nuclear accumulation (N/total) after export inhibition by Leptomycin B is
decreased (GA100)

Nuclear accumulation (N/total) after export inhibition by Leptomycin B
is unchanged (PA100 /GR100 /PR100)

Vanneste 2019 [58]

(O) IBB-domainKPNA2-FRET sensor (nuclear) Impβ
DPR

Peptide injection in permeabilized primary
mouse cortical neurons

Nuclear accumulation (N/C) is decreased (dose-dependent and more so with
PR20/GR20 than with PR10/GR10), and minimal decrease with GA10/PA10

Nuclear accumulation (N/C) is unchanged (GP10)

Hayes 2020 [50]
IBB-domainKPNA2-FRET sensor (nuclear) Impβ

DPR
Peptide injection in permeabilized HeLa cells

Nuclear accumulation (N/C) is decreased (more so with PR20/GR20 than
with PR10/GR10) ††† Nuclear accumulation (N/C) is unchanged (PA10/GA10 /GP10)

GST-GFP-NLSSv40 (nuclear) Impα/β complex Nuclear accumulation (N/C) is decreased (more so with PR20/GR20 than
with PR10/GR10) Nuclear accumulation (N/C) is unchanged (PA10/GA10 /GP10)

(P) YFP-M9hnRNPA1-CFP
(nuclear) TNPO1 Nuclear accumulation (N/C) is decreased (more so with PR20/GR20 than

with PR10/GR10) Nuclear accumulation (N/C) is unchanged (PA10/GA10 /GP10)

GCR2-GFP2-MBP-NLSSV40
(nuclear ‡) Nuclear accumulation (N/C) is decreased (GR25)

Hutten 2020 [59]
GCR2-GFP2-NLSSV40

(nuclear ‡)

Impα/β complex DPR peptide addition to medium HeLa cells
Nuclear accumulation (N/C) is decreased (GR25) ‡‡

* K to P mutation in the PKI-NES. † PR175-GFP was lower expressed than the GFP-GR149 and GA149-GFP. †† Reduced protein translation for GR100/PR100 expressing cells. ††† Passive diffusion of GFP and small
fluorescent dextrans into the nuclei of permeabilized HeLa cells increased by PR10 and GR10, not by GP10, GA10, or PA10. ‡ Nuclear with dexamethasone. ‡‡ Nuclear accumulation and solubility of control
GCR2-GFP2 reporter (lacking NLS) not altered.
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1.4. Commonly Used Nuclear Transport Assays

The assays monitoring the kinetics of nuclear import and/or export generally use
small inert reporters, such as GFP with a sorting signal, to control and limit reporter
retention [60]. A GFP-NES or GFP-NLS reporter will passively pass the NPC down the
concentration gradient owing to its small size, but additionally be actively transported
owing to the NES/NLS [60]. Thus, its localization at steady state is the result of continuous
nuclear import and efflux in the case of GFP-NLS, and export and influx in the case of
GFP-NES (see Figure 1). The ratio between the fluorescence levels in the nucleus and
cytosol provides the most common transport readout (the N/C ratio). The steady state
localization of reporters encoding both an NLS and NES report on the ratio between import
and export [61]. Provided that proper controls for the functionality of the NLS and NES
are performed, this strategy has the advantage that, with a single cell line/model, one can
monitor both import and export.

To measure actual rates of transport and influx/efflux, there are several strategies.
Influx rates can be measured by monitoring the passive nuclear entry of larger cargoes, e.g.,
multimers of GFP, of proteinA, and of maltose-binding protein moieties [1,2]. The passive
diffusion through the pores is affected by the overall size and shape of the protein, and
its surface properties [62]. For example, surface histidines, cysteines, and arginines will
facilitate the movement through the FG-Nup meshwork, and higher surface hydrophobicity
increases the NPC passage [62]. Efflux and influx rates can also be measured using the
GFP-NLS and GFP-NES reporters by inhibiting active import or export and following
the subsequent loss of compartmentalisation. Import and export rates are derived from
experiments where the import or export of GFP-NLS or GFP-NES reporters is temporarily
disturbed, after which the re-establishment of the equilibrium can be quantified. Jointly,
this collection of assays reports on the steady state ratios between nuclear entry and exit,
or yields the individual rates of entry and exit by temporarily altering the steady state.

There are several options to block import or export. CRM1 export can be inhibited
by Leptomicin B (LMB) [63], a fungicide that binds CRM1 irreversibly in the NES binding
region, thus blocking the binding between CRM1 and its cargo [64,65]. A limitation of
the use of LMB may be its off-target effects; it also inhibits the degradation of p53 and
upregulates apoptosis in cancer lines [66], limits RNA translation [67], and leads to accu-
mulation of poly(A)+ RNA within the nucleus [68]. Several import inhibitors are available
that each block a specific transport route; e.g., importazole [69], ivermectin [70], and free
importin-β-binding domain [50] inhibit the importin-α/β route, while the M9M peptide
inhibits TNPO1 [71]. Alternatively, 2-deoxyglucose and/or sodium azide deplete cells
from ATP, and can thus also be used to disrupt the RanGTP gradient. Depleting RanGTP
inhibits major export and import pathways, but the different export routes are more sensi-
tive to RanGTP depletion than the import via importin-α, importin-β, or transportin [72].
Especially in baker’s yeast, inhibition of import has been accomplished by anchor away
strategies, such as anchoring of Kap95 to the plasma membrane ATPase using rapamycin
inducible dimerization of FRB- and FKBP-domains attached to the NTR and the plasma
membrane ATPase [73]. Methods that are performed at steady state and circumvent the use
of drugs or poisons are based on fluorescence recovery after photobleaching (FRAP) and
fluorescence loss in photobleaching (FLIP). In import studies, the nuclear area is bleached,
and the recovery of nuclear fluorescence, which relies on the exchange of fluorescent
molecules from the cytosol with bleached molecules from the nuclear compartments, is
taken as a read-out for import rates [74,75]. As all assays, except those based on FRAP
and FLIP, are subject to possible side effects of the interventions inhibiting transport, a
combination of interventions is advisable.

Commonly used nucleocytoplasmic transport assays are performed in permeabilized
cells, in live cells, or in in vitro assembled oocyte nuclei, and are listed in Table 2. A much
used in vitro NCT assay uses digitonin permeabilized cells supplemented with exoge-
nous recombinant transport factors [76]. This assay yields nuclei with functional NPCs
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while allowing to introduce the reporter proteins and NTRs at known concentrations and
timepoints. The disadvantages are that permeabilization can relocate or extract soluble
proteins [77] including transport factors and ATP [76], and potentially alter transport kinet-
ics. In order to limit method artefacts, permeabilization assays are preferably combined
with live-cell imaging [77]. The simplest transport measurements in live cells are those that
determine the steady state distribution of GFP-NLS or GFP-NES reporters. Alternatively,
as discussed above, the kinetics can be determined either based on the use of poisons to
alter the steady state, or based on FRAP or FLIM. Lastly, like permeabilized cells, in vitro
assembled oocyte nuclei also provide a system where reporter proteins and NTRs can be
introduced at known concentrations and timepoints aiding kinetic measurements. Xenopus
egg extracts contain the structural components of nuclei in a disassembled state, but will
reconstitute nucleus-like structures around added DNA [78]. These nuclei actively exclude
nonnuclear proteins and accumulate nucleoplasmin and proteins with NLSs [79–81], and
import can be inhibited with lectin wheat germ agglutin, which binds to glycosylated FG-
Nups [82]. Here, a combination of transport models may also provide the best assessment
of the question at hand.

Table 2. Benefits and drawbacks of commonly used transport assays.
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2. Nuclear Transport Up-Close: Complications When Interpreting Nuclear
Transport Data

NCT assays rely on monitoring the localization of proteins to either the nuclear or
cytosolic compartment (Figure 1). A change in localization can report a change in import
or export efficiency by the joint action of NPCs, NTRs, and Ran. The interpretation of
what drives the change in import or export efficiency and the contribution of each specific
component (NPCs, NTRs or Ran), however, is often complicated for a number of reasons.

First, cargoes are transported by dedicated transporters, which recognize their cargo
via particular NLSs and/or NESs. However, often, a simple “one cargo–one NTR” relation
does not exist, as specific NTR-isoforms show preference for certain NLSs, several NTRs
can be redundant for one specific NLS, and a protein or protein complex can contain
multiple localization sequences (see Table 3 for examples). NLS sequences are, among
others, the classical NLS, which has a mono- or bipartite basic amino acid cluster [90]; the
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PY-NLS; and a RG-rich NLS [91]. Some importins have their own preferred sequences, such
as yeast Kap121, which recognizes a non-conventional lycine-rich sequence [92]. There is
not yet a full overview in which sequences are recognized by the importins, but attempts
are ongoing to discover more NLSs [93]. The full complement of interactions between
NTRs and cargoes in a specific cellular setting has not been established to date, hence a
change in localization of one cargo cannot easily be connected to the activity of a specific
NTR or NTR isoform.

Second, import rates depend on the availability of the NTRs [84,94,95]. The formation
of a complex of NTR and cargo in the crowded cytosol is rate-limiting compared with the
fast translocation through the NPC, which is reported to occur on the timescale of mil-
liseconds for commonly used reporters [96]. Therefore, altering the concentration of NTRs
impacts transport rates. For example, Kap121 and Kap123 recognize the same NLSs, and
when expressed at similar concentrations, import rates are indistinguishable [84]. However,
natively, the abundance of Kap123 is higher than that of Kap121, thus making Kap123-
mediated import faster [84]. Import rates eventually saturate at high NTR levels, which
must be owing to saturation of the NPCs, the RanGTP transport complex dissociation, or
both [84]. The expression or availability of NTRs can change under stress conditions. For
example, the importin Hikeshi, which uses ATP to import Hsp70 to limit shock-induced
damage, is specifically upregulated under heat stress [16]. Moreover, conditions of oxida-
tive stress and heat shock lead to rapid accumulation of Impα in the nucleus [97,98], and
arsenite stress accumulates Impα in stress granules [99]. To explain a change in the local-
ization of a reporter mechanistically, one would want to know whether the intervention,
e.g., the introduction of DPRs or G4C2 DNA sequences, created a change in the levels of
NTRs available for transport.

Table 3. Transport specificity and redundancy.

I. Transport of Cargo Depends on a Localization Sequence that is Recognized by an NTR
NTR NLS/NES

Impα/β
Sv40/cNLS: PKKKRKV [90]
cMyc: PAAKRVKLD [100,101]
Nucleoplasmin: KRPAATKKAGQAKKKK [102]

TNPO1 PY-NLS: R-X2-5-PY motif [103]
e.g., FUS: RG-rich46RQDRRERPY [104]

Kap104 RG-rich motif [91]

Kap121 Lycine-rich sequence [92]

Attempts to discover more NLSs [93]

CRM1
Φ-X2-3-Φ-x2-3-Φ-x-Φ; where Φ is I, M, F, V, and mostly L [105,106]
PKI: e.g., MSLNELALKLAGLDI [58]
HIV-1 Rev: LQLPPLERLTL

II. Redundancy in NTRs for One Type of NLS

NTR1 NLSi-Cargo1
NTR2 NLSi-Cargo1

Different NTRs can recognize the same NLS, and thus transport the same
cargo; e.g., Trn1, Trn2A, and Trn2B all bind the PY-NLS, and transport FUS
[107]/HuR [108], as well as unique cargoes.

NTR1a NLSi-Cargo1
NTR1b NLSi-Cargo2

Different isoforms of one NTR may bind the same NLS, but transport other
cargoes; e.g., importin-α isoforms bind the classical NLS, but, e.g., STAT1 is
bound by α5, but not by α1 [109]. Importin-α3 only recognizes the NLS with
appropriate N-terminal flanking residues [110].

III. Redundancy in NTRs for One Type of Cargo
NTR1 NLSi -Cargo1
NTR2 NLSii-Cargo1

A group of cargoes, with distinct NLSs, can be recognized by different NTRs;
e.g., Kap121 can substitute Kap123 for import of ribosomal proteins [111,112]
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Table 3. Cont.

IV. Combinations of Localization Sequences
NTR1 NLSi-NLSii-Cargo1
NTR2 NLSi-NLSii-Cargo1

One cargo may have two different NLSs; e.g., Nxf1 contains a cNLS for
importin 4/11/α/β and a PY-NLS for Trn1/Trn2 [113–117].

NTR1 NLS-NES-Cargo1
NTR2 NLS-NES-Cargo1

One cargo may contain an NLS and an NES; cyclin B [118,119] and HIV Rev
[105,120] contain an impβ1 NLS and a CRM1 NES.

NTR1 NES-adaptor Cargo1 Ribosomal pre60S particles bind to an adaptor protein (NMD3), which contains
the NES [121,122].

Third, import rates also depend on the affinity between NTR and NLS, where over
a certain range, a higher affinity will give a higher import rate [84,85,123]. However, a
too high binding affinity prevents NTR–cargo complex dissociation and, consequently,
inhibits transport [124,125]. Affinities can be temporarily altered by post-translational
modifications (PTM), with phosphorylation of NTRs [126,127] and NLSs [128,129], the
most studied PTM regulating NCT [130,131]. For example, transcription factors are only
required for short periods of time and in small amounts, and sequences close to their NLS
are phosphorylated to increase the affinity for importins [128,129] or cause retention in
nucleus or cytoplasm [132]. However, methylation [133,134], ubiquitination [135–137],
acetylation [138], and sumoylation [139] have also been shown to influence NTR binding.
NTR binding can also be altered by physicochemical parameters, as is the case for ROS-
induced formation of disulfide bonds between TRN1 and FOXO [140], which is reversed in
the more reduced environment of the nucleus [141]. Proteolytic events can unmask NLS and
NES sequences [142–144], whereas binding to another protein [145–147] or mRNA [148],
or protein multimerization [149,150], can bury sorting sequences. To explain a change in
the localization of a reporter mechanistically, one would want to know whether the affinity
of the NTR for the NLS is altered. This is often not trivial to determine as the affinities
determined with purified protein can be different from those determined in cytoplasmic
extract [151] or those observed when multiple cargoes are presented simultaneously [152].

A fourth, and major, complication to interpret what drives the change in import
or export efficiency is related to the fact that nuclear import of a specific heterologously
expressed transport reporter (Figure 1) is always in competition with the transport of native
cargoes. Because most NTRs have more than one specific cargo to transport, an increase in
any of the cargoes of that NTR leads to lower N/C ratios of all its cargoes, including the
reporter used to study transport [75,89]. Additionally, more cargo for one NTR can limit
RanGTP availability to all NTRs, and slow down the recycling of importins and export.
These aspects are easily overlooked when interpreting NCT data, but can lead to the false
conclusion that the import kinetics by one specific NTR is reduced in a disease model
compared with a wild type situation, while all that is changing is the concentration of
competing cargo.

Lastly, it should be taken into account that changes in the localization of a reporter
can be the result of changes to the NPCs themselves, both in number and in functionality.
Recently, a disease-related reduced nuclear abundance of key Nups was shown in C9ALS
and sporadic ALS iPSNs [153]. Theoretical considerations predict that fewer NPCs will
support a higher accumulation of a GFP-NLS reporter in the nucleus [154], as the number
of NPCs is likely limiting for efflux, but not for import [84,89]. Additionally, the deletion of
one nucleoporin immediately translates to reduced export [155–161], but because the rate
limiting step for import is receptor binding [95,154,162], cells still maintain high import
rates even when FG-domains in the NPCs are deleted [6,163]. Specific NTRs preferentially
bind specific FG-Nups, hence the presence or absence of certain FG-Nups may affect only
specific import routes [6,164,165]. PTM has been reported to change the structure of pores.
For example, in yeast, phosphorylation of Nup53 releases its binding partner Nup170, thus
exposing binding sites for Kap121 on Nup170, limiting Kap121 import directly [166], a
process that may also underlie reduced transport by TRN-1 and Kapβ [127]. Knowing
the number and functionality of individual NPCs is a major challenge, and together with
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the previously mentioned complications of mapping the full complement of NTRS and
cognate cargoes in a cell, these aspects provide the largest challenge in interpreting what
underlies a change in the localization of a NCT reporter.

To summarize, in order to assess if the transport of proteins is altered in a disease
model, well controlled steady state, or dynamic measurements of the location of mobile,
non-toxic reporter proteins suffice. Preferably, multiple NLS- or NES-containing reporters
representing different transport pathways are used. To understand what drives a possible
change in the transport of these reporters, several additional, and rather complex, questions
have to be addressed (summarized in Figure 2). In case of the outermost layers, we enter
into what is presently still largely uncharted scientific territory.
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All considerations above apply when comparing data obtained using different model
systems. Nucleoporin expression changes between different cell types, tissues, and disease-
states [167–171], as well as during development and ageing [172,173]. Moreover, the
abundance of the NTRs differs between cell types. For example, Kapα levels differ between
leukaemic cell lines [151] and between testis, ovary, spleen, heart, kidney, brain, or muscle
cells [152,174–177]. Further, whereas TRN2A is expressed in HeLa cells, it is undetectable
in HEK293T cells [108]. Kapα2 [178–182] and CRM1 [182–189] have been shown to be
upregulated in different types of cancers, and NTR expression is regulated during devel-
opment [190,191] and differentiation [192,193]. Thus, there is cell type variability of NPCs
and cognate nuclear transport factors, which complicates the comparison of results from
different studies.

For the studies related to C9-ALS, a further complication in the comparison of results
is related to the fact that the DPRs impact cell physiology variably in the used biological
systems as they localize differently and are toxic to different extents. In Table 4, we
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summarize the localization of different DPRs in different model systems and highlight
whether they convey growth defects (indicated in different colours). For example, poly-
PR is generally the most toxic DPR and PA is often non-toxic; this is the case in iPSC
neurons [194], S. cerevisiae [47], rat neurons [194], mouse neurons, and HEK293 cells [195].
Yet, in zebrafish embryos, PR is less toxic than GR and equally toxic to PA [196]. PR is
rarely found in patient material, usually attributed to its high toxicity, but if it is detected,
it is found in aggregates in the cytoplasm [197,198]. This localization is not observed
in most model systems where PR is nuclear or nucleolar [194,195,199–202]. The reports
on poly-GA are diverse, reporting non-toxic [46,47,53,194–196,199,200,203,204] as well as
toxic [49,200,205,206] effects. Interestingly, it seems that the toxicity of DRPs increases
when cells are further differentiated into neurons [207]. Thus, even independent of the
discussed cell type specific differences in the nuclear pores and cognate transport factors,
the effect of DPRs on transport in the different C9-ALS models may be variable owing to
differences in localization and toxicity.

3. Is Nuclear Transport Altered in C9-ALS?

The seven papers on NCT in C9-ALS [45,50,52,55,57–59] jointly report on 21 experi-
ments assessing the localization of transport reporters in different C9-ALS models (Table 1).
Clearly, despite obtaining solid and significant data, it is still difficult to conclude whether
the data unambiguously establish that actual effects on NCT kinetics are observed when
introducing C9-ALS-related peptides or DNA. How can six papers convincingly show
alterations in the localization of transport reporters [45,50,52,55,57,59], whereas the seventh
extensively shows no effects can be observed [58]?

Cell type-specific characteristics. When discussing several complications in the inter-
pretation of NCT data, we mentioned cell type-specific transport characteristics, such as
distinct NLS–NTR affinities or NTR abundances. This complication is clear when com-
paring the outcomes of the experiments in B and D (Table 1, for all further references in
this section, see Table 1); the same reporter that is excluded from the nucleus in wild type
motor neurons localizes to the nucleus in wild type Drosophila salivary glands. The same
is observed comparing wild type HeLa Kyoto cells (L) and neuronal cells (N), where the
reporter localizes differently in both cell types. These differences depending on cell type
are also observed when specific DPRs are introduced. Namely, PR20 peptide injection
reduces importin-α/β import in U2OS cells (F), but not in HeLa Kyoto cells (J). Similarly,
poly-GA impacts the transport of an NLSSv40-mNeonGreen2x-NESPKI reporter in neuronal
cells (N), but not in HeLa Kyoto cells (L). There may even be subpopulations within a
cell type that behave differently. For example, when a subpopulation of cells with stress
granules is selected, transport alterations are observed for (L), whereas this was not seen
in the whole population [58]. This may be linked to the fact that arginine-rich DPRs can
undergo liquid–liquid phase separation, and induce phase separation of a large set of pro-
teins involved in RNA and stress granule metabolism [208]. Jointly, the cell type-specific
localization of a reporter in wild type cells illustrates that cell type-specific differences in,
among others, NPCs and cognate transport factors impact the transport assays (Table 1,
compare L–N, B–D). In addition, the introduction of C9-ALS models adds to the variability
between cell types (Table 1, compare F–J, N–L), possibly through the mentioned differences
in localization and toxicity (Table 4).

Sorting signals. When discussing the different transport assays available, their possible
technical complications were mentioned. A potential issue when using reporters with
multiple localization signals relates to the fact that GFP has an intrinsic tendency to
accumulate in the nuclear compartment [62,209], irrespective of the presence of an NLS.
Nuclear localization of a GFP-based reporter may thus not be driven by import, but rather
by influx. For example, the data suggest that the Sv40NLS is not very effective in motor
neurons, as it does not promote nuclear accumulation when the NES is removed (E).
Without controls, we do not know whether the nuclear accumulation of a reporter is due
to import or influx, and the impact of DPRs thus might be on influx rather than active
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transport. Determining the effect is complicated, as Hayes et al. show that passive diffusion
of GFP and small fluorescent dextrans into the nucleus, and thus influx of molecules is
increased by PR10 and GR10 [50]. Validating the functionality of the sorting signals in
reporters with both NLS and NES sequences is thus important to prevent changes in influx
being misinterpreted as changes in import.

Transport assays. Changes in transport induced by the introduction of C9-ALS models
are quantified in different ways, reporting either the nuclear fluorescence or the cytosolic
fluorescence (A–G) or a ratio relative to the total (H–N) or cytosolic (O–P) fluorescence.
Measuring the steady state fluorescence in the nucleus relative to the cytosol or total
fluorescence is less sensitive to changes in expression level than other readouts such as
nuclear (or cytosol) fluorescence alone. This may have impacted the interpretation in this
case as poly-PR (and poly-GR) can limit translation [58,204,210]. Hence, it is possible that
the expression of the reporter is reduced in the C9-ALS-models (B,C), which caused a lower
nuclear fluorescence, rather than an effect on import.

Mobile reporters are the basis of all transport assays, and a quantification of the mobile
fraction in FRAP experiments can be used to confirm that they are indeed mobile. However,
it is the rate of recovery after bleaching in the nuclear or cytosolic compartment that is a
measure for the kinetics of transport. The experiment in (A), for example, measures the
change in mobile fraction, rather than actual transport kinetics.

Regarding the choice of transport assays (Table 2) and reporter, we mentioned that
it is preferable to assess different transport reporters when studying NCT, as different
NTRs each represent unique import pathways with unique parameters—affinities for FG-
Nups, expression levels, and competing cargoes—defining their import kinetics. This is
illustrated in (H,I) where the localization of a TNPO1 cargo is insensitive to GA149, while
that of an importin-α/β is sensitive. Moreover, each transport assay has advantages and
disadvantages (Table 2), and even though cell permeabilization assays (G) and injections
(F,G,J,K) are used frequently in the field, it would be helpful to combine permeabilized
studies with live-cell imaging.

Jointly, in the case of these C9-ALS studies, several technical limitations may have
impacted the interpretation of the data summarized in Table 1. Hence, at present, it is not
firmly established whether the introduction of disease-related biomolecules, G4C2-DNA,
RNA, and DPRs, impacts the transport kinetics by NPCs.

Thus, even though convincing data have been obtained confirming a relation to the
NCT machinery in C9-ALS in general, it is difficult to conclude from the current transport
data if and how C9-ALS affects the actual kinetics of NCT. For future studies, the choice of
model systems is critical, both from the perspective of the diverse behaviour of C9-ALS
related DPRs (Table 4) and the diversity in the characteristics of NCT in different cells
types. Moreover, to facilitate the interpretation of transport assays mechanistically, one
would ideally quantify all nucleocytoplasmic transport components (NTR abundance, NPC
number and functionality, and the integrity of the Ran gradient), study different NTRs, and
combine different transport assays. These in-depth studies are required to answer whether
NCT is changed in C9-ALS, and potentially many proteins are mislocalized, leading to
cellular alterations causing the disease, or, alternatively, that the NCT machinery is a robust
system, and widespread mislocalization of nuclear proteins should not be expected to occur
or be causal to the phenotype of C9-ALS. The challenges described are not unique to the
case of C9-ALS, and answering the question of how NCT is impacted in neurodegenerative
diseases represents a major opportunity for scientists from the nuclear transport and
neuroscience communities.
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Table 4. Toxicity and cellular localization of DPRs are not the same in all studied model organisms.

Cell Type PR PA GP GR GA

Patients
Frontal cortex

(Rare)
Cytoplasmic aggregation [197,198] (Rare) Cytoplasmic aggregation [198] Cytoplasmic, paranucleolar

aggregation [197]

Cytoplasmic aggregation [197] Cytoplasmic, (paranuclear) inclusions [205]

Paranucleolar aggregation [197] Paranucleolar aggregation [197,205]

(Rare) [198]
Sparse: Cytoplasmic inclusions, or intra-nuclear inclusions [211]

Sparse: Cytoplasmic inclusions,
cytoplasmic granular, or intranuclear

inclusions [211]

Numerous: Cytoplasmic inclusions,
cytoplasmic granular, or intranuclear

inclusions [211]

(Rare) [198]
Moderate: Cytoplasmic inclusions or intranuclear inclusions [211]

Numerous: Cytoplasmic inclusions, cytoplasmic granular, or
intranuclear inclusions [211]

Patients spinal chord Nuclear and extra-nuclear inclusions [194]

iPSC neurons Nucleolar [194]
[194] Cytoplasmic diffuse [194,203,212]

Perinuclear [212]
or cytoplasmic inclusions

[194,203]

Neuro2a cells
Cytoplasmic and nucleolar

[213] Cellular diffuse [213] Cellular diffuse
[213]

Cytoplasmically diffuse
[213]

Cytosolic and nuclear inclusion bodies
[213]

[200] [200] [200] [200] [200]

Rat neurons
Length dependent toxicity [194] [194]

[194,214] [194] [194] Nucleolar aggre-gation, cytoplas-mic diffuse [197,214] Cytoplasmic aggregation
[206]

Mouse neurons
Cytoplasmic aggregation

[205,213]Cytoplasmic diffuse plus inclusions
[195,213]

Cellular diffuse
[195,213]

Cellular diffuse
[195,213]

Cellular diffuse
[195,213] [195]

NCS34 cells (mouse motor neurons)
Nuclear aggregation

[194,204]Nuclear aggregation
[194,204,207]

Cytoplasmic aggregation
[194,207]

Cellular diffuse
[194,207] [207]

Cytoplasmic aggregation
[194,204]

Differentiated SH-SY5Y cells
(neuroblast) Nuclear [202] Diffuse cytosolic [202] Diffuse cytoplasmic, plus nucleolar [202] Stellate-like cytoplasmic inclusions [202]

HEK293 cells
(cancer cells)

Cellular diffuse, nucleolar/cytoplasmic inclusions [205,206]
Cellular diffuse [205,206,213] Cellular diffuse [205,206,213]

Cytoplasmic aggregation [206,213]
Cytoplasmic aggregates, plus nucleolar [213] Nuclear aggregation [205]

Cytoplasmic, occasionally nuclear aggregation [49,205,206]

Nucle(ol)ar
[195]

Cellular diffuse
[195]

Cellular diffuse
[195]

Nucle(ol)ar
[195] Cellular [195,213]

HeLa cells
(cancer cells) Nucleolar [200] Cellular diffuse [200] Cellular diffuse, preferentially nuclear

[200]

Nucleolar [200] Paranuclear aggregation [200]
Cytoplasmic inclusions [203]Cytoplasmic diffuse [203]

Cytoplasmic inclusions [213] Diffuse cellular [213]
K562 cells (cancer cells) [215] [215]

U2OS cells (cancer cells) Nucleoli
[201]

Nucleoli
[201]

CHO cells (Chinese ham-ster ovary) [207] [207] [207] [207]
COS cells (fibroblast-like monkey

kidney cells) Cellular diffuse [213] Cytoplasmic inclusions [213] Cellular diffuse [213]

C. elegans (muscle) Nucleolar
[199]

Cellular diffuse, preferentially nuclear
[199]

Cytoplasmic diffuse and nucleolar
[199]

Cytoplasmic aggregation
[199]

D. melanogaster [53,193,199,202,211] [53,194,200,216] [46,200] Cytoplasmic diffuse [203] [46,53,194,200,203]
S. cerevisiae [47] [47] [47] [47]

Zebrafish embryo’s [196] [196] [196] [196]

Colour coded toxicity from red meaning highly toxic, intermediately toxic in orange, to green denoting non-toxic, as specified in each paper (not comparatively between model organisms). Reference to toxicity is
in the right lower corner.
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Abbreviations

ALS amyotrophic lateral sclerosis
C9-ALS C9orf72-related ALS
DPRs dipeptide repeat proteins
FG phenylalanine glycine repeat
FLIP fluorescence loss in photobleaching
FRAP fluorescence recovery after photobleaching
FUS fused in sarcoma
GA, GP, GR, PA, PR glycine-alanine, glycine-proline, glycine-arginine, proline-alanine,

proline-arginine repeats
LMB leptomycin B
NES nuclear export sequence
NLS nuclear localization sequence
NP/NMP1 nucleophosmin
NPC nuclear pore complex
NTR nuclear transport receptor
Nups nucleoporins
PKI cAMP-dependent protein kinase inhibitor
PTM post-translational modification
RAN translation repeat-associated non-AUG translation
Ran Ras-related nuclear protein
RanGAP Ran GTPase activating protein
RanGEF Ran guanine nucleotide exchange factorRBP RNA binding protein
ROS reactive oxygen species
Sv40 simian virus 40
Rev human immunodeficiency virus type 1 Rev protein
TDP-43 TAR-DNA binding protein 43
TNPO1 Kapβ2
TRN1 transportin 1
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