135 research outputs found

    Discovery and application of colorectal cancer protein markers for disease stratification

    Get PDF
    Colorectal cancer (CRC) is a major cause of cancer mortality. Whereas some patients respond well to therapy, others do not, and thus more precise methods of CRC stratification are needed. The intracellular protein expression from 28 CRC primary tumours and corresponding normal intestinal mucosa was analysed using saturation-DIGE/MS and Explorer antibody microarrays. Changes in protein abundance were identified at each stage of CRC. Proteins associated with proliferation, glycolysis, reduced adhesion, endoplasmic reticulum stress, angiogenesis, and response to hypoxia represent changes to CRC and its microenvironment during development. Molecular changes in CRC cells and their microenvironment can be incorporated into clinic-pathological data to help sub-classify tumours and personalise treatment. DotScan antibody microarray analysis was used to profile the surface proteome of cells derived from 50 CRC samples and corresponding normal intestinal mucosa. Fluorescence multiplexing enabled the analysis of two different sub-populations of cells from each sample: EpCAM+ cells (CRC cells or normal epithelial cells in normal mucosa) and CD3+ T-cells (tumour-infiltrating lymphocytes). Unsupervised hierarchical clustering of the CRC and T-cell surface profiles defined four clinically relevant clusters, which showed some correlation with histopathological and clinical characteristics such as cancer cell differentiation, peri-tumoural inflammation and stimulation of infiltrating T-cells. The observed relationship between the surface antigen expression profiles of patients’ CRC cells and their corresponding tumour infiltrating T-cells suggests that CRC surface proteins may play a direct role in influencing the activity (and hence surface protein expression) of neighbouring T-cells and/or vice versa. We conclude that the application of surface profiling may provide improved patient stratification, allowing more reliable prediction of disease progression and patient outcome

    In Conversation with Mubin Shaikh: From Salafi Jihadist to Undercover Agent inside the "Toronto 18" Terrorist Group

    Get PDF
    This interview with former undercover agent Mubin Shaikh can help academics and security practitioners understand the key role played and the challenges faced by covert human intelligence sources within domestic terrorist groups. The interview highlights the identity crisis, the personal factors, and the allure of jihadi militancy that initially drove Shaikh to join a Salafi jihadist group. It investigates Shaikh’s process of disengagement from the Salafi jihadist belief system and his rediscovery of a moderate, inclusive, and benevolent form of Islam. It explores his work as an undercover agent for the Canadian Security Intelligence Service, the Royal Canadian Mounted Police, and the Integrated National Security Enforcement Team responsible for disrupting domestic terrorist groups. The “Toronto 18” terrorist cell, the key role played by undercover agents in preventing terrorist action, and the challenges posed by entrapment are also discussed

    Exploring the versatility of the covalent thiol-alkyne reaction with substituted propargyl warheads: a deciding role for the cysteine protease

    Get PDF
    Terminal unactivated alkynes are nowadays considered the golden standard for cysteine-reactive warheads in activity-based probes (ABPs) targeting cysteine deubiquitinating enzymes (DUBs). In this work, we study the versatility of the thiol-alkyne addition reaction in more depth. Contrary to previous findings with UCHL3, we now show that covalent adduct formation can progress with substituents on the terminal or internal alkyne position. Strikingly, acceptance of alkyne substituents is strictly DUB-specific as this is not conserved among members of the same subfamily. Covalent adduct formation with the catalytic cysteine residue was validated by gel analysis and mass spectrometry of intact ABP-treated USP16CD(WT) and catalytically inactive mutant USP16CD(C205A). Bottom-up mass spectrometric analysis of the covalent adduct with a deuterated propargyl ABP provides mechanistic understanding of the in situ thiol-alkyne reaction, identifying the alkyne rather than an allenic intermediate as the reactive species. Furthermore, kinetic analysis revealed that introduction of (bulky/electron-donating) methyl substituents on the propargyl moiety decreases the rate of covalent adduct formation, thus providing a rational explanation for the commonly lower level of observed covalent adduct compared to unmodified alkynes. Altogether, our work extends the scope of possible propargyl derivatives in cysteine targeting ABPs from unmodified terminal alkynes to internal and substituted alkynes, which we anticipate will have great value in the development of ABPs with improved selectivity profiles.Proteomic

    Clostridioides difficile phosphoproteomics shows an expansion of phosphorylated proteins in stationary growth phase

    Get PDF
    In this paper, we present a comprehensive analysis of protein phosphorylation in the Gram-positive enteropathogen Clostridioides difficile. To date, only limited evidence on the role of phosphorylation in the regulation of this organism has been published; the current study is expected to form the basis for research on this posttranslational modification in C. difficile.Phosphorylation is a posttranslational modification that can affect both housekeeping functions and virulence characteristics in bacterial pathogens. In the Gram-positive enteropathogen Clostridioides difficile, the extent and nature of phosphorylation events are poorly characterized, though a protein kinase mutant strain demonstrates pleiotropic phenotypes. Here, we used an immobilized metal affinity chromatography strategy to characterize serine, threonine, and tyrosine phosphorylation in C. difficile. We find limited protein phosphorylation in the exponential growth phase but a sharp increase in the number of phosphopeptides after the onset of the stationary growth phase. Our approach identifies expected targets and phosphorylation sites among the more than 1,500 phosphosites, including the protein kinase PrkC, the anti-sigma-F factor antagonist (SpoIIAA), the anti-sigma-B factor antagonist (RsbV), and HPr kinase/phosphorylase (HprK). Analysis of high-confidence phosphosites shows that phosphorylation on serine residues is most common, followed by threonine and tyrosine phosphorylation. This work forms the basis for a further investigation into the contributions of individual kinases to the overall phosphoproteome of C. difficile and the role of phosphorylation in C. difficile physiology and pathogenesis. IMPORTANCE In this paper, we present a comprehensive analysis of protein phosphorylation in the Gram-positive enteropathogen Clostridioides difficile. To date, only limited evidence on the role of phosphorylation in the regulation of this organism has been published; the current study is expected to form the basis for research on this posttranslational modification in C. difficile.Molecular basis of bacterial pathogenesis, virulence factors and antibiotic resistanc

    Glycoproteomic Analysis of MGL-Binding Proteins on Acute T-Cell Leukemia Cells

    Get PDF
    C-type lectins are a diverse group of proteins involved in many human physiological and pathological processes. Most C-type lectins are glycan-binding proteins, some of which are pivotal for innate immune responses against pathogens. Other C-type lectins, such as the macrophage galactose-type lectin (MGL), have been shown to induce immunosuppressive responses upon the recognition of aberrant glycosylation on cancer cells. MGL is known to recognize terminal N-acetylgalactosamine (GalNAc), such as the Tn antigen, which is commonly found on malignant cells. Even though this glycan specificity of MGL is well described, there is a lack of understanding of the actual glycoproteins that bind MGL. We present a glycoproteomic workflow for the identification of MGL-binding proteins, which we applied to study MGL ligands on the human Jurkat leukemia cell line. In addition to the known MGL ligands and Tn antigen-carrying proteins CD43 and CD45 on these cells, we have identified a set of novel cell-surface ligands for MGL. Importantly, for several of these, O-glycosylation has hitherto not been described. Altogether, our data provide new insight into the identification and structure of novel MGL ligands that presumably act as modulatory molecules in cancer immune responses.Proteomic

    Small-molecule activity-based probe for monitoring ubiquitin C-terminal hydrolase L1 (UCHL1) activity in live cells and zebrafish embryos

    Get PDF
    Many reagents have emerged to study the function of specific enzymes in vitro. On the other hand, target specific reagents are scarce or need improvement, allowing investigations of the function of individual enzymes in their native cellular context. Here we report the development of a target-selective fluorescent small-molecule activity-based DUB probe that is active in live cells and an in vivo animal model. The probe labels active ubiquitin carboxy-terminal hydrolase L1 (UCHL1), also known as neuron-specific protein PGP9.5 (PGP9.5) and Parkinson disease 5 (PARK5), a DUB active in neurons that constitutes 1 to 2% of the total brain protein. UCHL1 variants have been linked with neurodegenerative disorders Parkinson's and Alzheimer's diseases. In addition, high levels of UCHL1 also correlate often with cancer and especially metastasis. The function of UCHL1 activity or its role in cancer and neurodegenerative disease is poorly understood and few UCHL1-specific activity tools exist. We show that the reagents reported here are specific to UCHL1 over all other DUBs detectable by competitive activity-based protein profiling and by mass spectrometry. Our cell-penetrable probe, which contains a cyanimide reactive moiety, binds to the active-site cysteine residue of UCHL1 in an activity-dependent manner. Its use is demonstrated by the fluorescent labeling of active UCHL1 both in vitro and in live cells. We furthermore show that this probe can selectively and spatiotemporally report UCHL1 activity during the development of zebrafish embryos. Our results indicate that our probe has potential applications as a diagnostic tool for diseases with perturbed UCHL1 activity.Cancer Signaling networks and Molecular Therapeutic

    Oxonium ion guided analysis of quantitative proteomics data reveals site-specific O-glycosylation of anterior gradient protein 2 (AGR2)

    Get PDF
    Developments in mass spectrometry (MS)-based analyses of glycoproteins have been important to study changes in glycosylation related to disease. Recently, the characteristic pattern of oxonium ions in glycopeptide fragmentation spectra had been used to assign different sets of glycopeptides. In particular, this was helpful to discriminate between O-GalNAc and O-GlcNAc. Here, we thought to investigate how such information can be used to examine quantitative proteomics data. For this purpose, we used tandem mass tag (TMT)-labeled samples from total cell lysates and secreted proteins from three different colorectal cancer cell lines. Following automated glycopeptide assignment (Byonic) and evaluation of the presence and relative intensity of oxonium ions, we observed that, in particular, the ratio of the ions at m/z 144.066 and 138.055, respectively, could be used to discriminate between O-GlcNAcylated and O-GalNAcylated peptides, with concomitant relative quantification between the different cell lines. Among the O-GalNAcylated proteins, we also observed anterior gradient protein 2 (AGR2), a protein which glycosylation site and status was hitherto not well documented. Using a combination of multiple fragmentation methods, we then not only assigned the site of modification, but also showed different glycosylation between intracellular (ER-resident) and secreted AGR2. Overall, our study shows the potential of broad application of the use of the relative intensities of oxonium ions for the confident assignment of glycopeptides, even in complex proteomics datasets.Proteomic

    Fc gamma receptor IIIb binding of individual antibody proteoforms resolved by affinity chromatography-mass spectrometry

    Get PDF
    The crystallizable fragment (Fc) of immunoglobulin G (IgG) activates key immunological responses by interacting with Fc gamma receptors (Fc gamma R). Fc gamma RIIIb contributes to neutrophil activation and is involved in antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). These processes present important mechanisms-of-actions of therapeutic antibodies. The very low affinity of IgG toward Fc gamma RIIIb (K-D similar to 10 mu M) is a technical challenge for interaction studies. Additionally, the interaction is strongly dependent on IgG glycosylation, a major contributor to proteoform heterogeneity. We developed an affinity chromatography-mass spectrometry (AC-MS) assay for analyzing IgG-Fc gamma RIIIb interactions in a proteoform-resolved manner. This proved to be well suited to study low-affinity interactions. The applicability and selectivity of the method were demonstrated on a panel of nine different IgG monoclonal antibodies (mAbs), including no-affinity, low-affinity and high-affinity Fc-engineered or glycoengineered mAbs. Thereby, we could reproduce reported affinity rankings of different IgG glycosylation features and IgG subclasses. Additional post-translational modifications (IgG1 Met252 oxidation, IgG3 hinge-region O-glycosylation) showed no effect on Fc gamma RIIIb binding. Interestingly, we observed indications of an effect of the variable domain sequence on the Fc-binding that deserves further attention. Our new AC-MS method is a powerful tool for expanding knowledge on structure-function relationships of the IgG-Fc gamma RIIIb interaction. Hence, this assay may substantially improve the efficiency of assessing critical quality attributes of therapeutic mAbs with respect to an important aspect of neutrophil activation.Proteomic
    • 

    corecore