107 research outputs found

    Plasmonique pour le photovoltaĂŻque

    No full text

    Intégration de nanostructures plasmoniques au sein de dispositifs photovoltaïques organiques : étude numérique et expérimentale

    No full text
    Thin-film solar cells are able to produce low-cost energy without greenhouse gas emissions. In order to increase devices performance, we investigate the impact of metallic nanostructures (NSs) integrated in organic solar cells (OSC). These NSs can generate scattering effects and surface plasmon resonances. Using FDTD modeling, we demonstrate that plasmon engineering can be used to increase light absorption in a photoactive material while minimizing the energy lost as heat in the NSs. The influence of opto-geometrical parameters of plasmonic structures in organic material is investigated (diameter, position of particles in the layer and period of spherical particles array). Experimentally, silver NSs are deposited by evaporation and incorporated into an organic layer. We measured an optical absorption enhancement in the spectral range useful for photo-conversion. Three different architectures of plasmonic OSC are fabricated and characterized by SEM, TEM and ToF-SIMS, then modeled, allowing us to identify some technological obstacles and to propose possible improvements. We also integrated NSs inside a transparent and conductive multilayer stack composed of oxide/metal/oxide, in the aim of replacing the traditional indium tin oxide electrode of a OSC. The role of each layer of the stack on the electrode optical behavior is discussed. Layers thicknesses of a ZnO/Ag/ZnO electrode were optimized.Les cellules solaires en couches minces permettent de produire de l'énergie à bas-coût et sans émission de gaz à effet de serre. Dans le but de réaliser des dispositifs toujours plus performants, nous étudions l'impact de l'intégration de nanostructures métalliques (NSs) au sein de cellules solaires organiques (CSO). Ces NSs peuvent alors générer des effets diffusifs et des résonances issues de plasmons de surface. A l'aide d'un modèle numérique FDTD, nous démontrons que l'ingénierie plasmonique peut servir à augmenter l'absorption dans le matériau photoactif tout en limitant l'énergie perdue sous forme de chaleur dans les NSs. L'influence de paramètres opto-géométriques de structures associant matériaux organiques et effets plasmoniques est étudiée (diamètre, position des particules dans la couche et période du réseau de particules sphériques). Expérimentalement, des NSs d'argent ont été réalisées par évaporation sous vide puis intégrées dans des couches organiques. Nous avons mesuré une exaltation de l'absorption optique dans la gamme spectrale utile à la photo-conversion. Trois architectures différentes de CSO plasmonique ont été fabriquées et caractérisées par MEB, TEM et ToF-SIMS, puis modélisées, permettant d'identifier des verrous technologiques et de proposer des pistes d'amélioration. Nous avons aussi intégré des NSs au sein d'un empilement transparent et conducteur de type oxyde/métal/oxyde, dans le but de remplacer l'électrode classique en oxyde d'indium et d'étain d'une CSO. Le rôle de chaque couche de l'empilement sur le comportement optique de l'électrode est discuté. Les épaisseurs des couches d'une électrode de type ZnO/Ag/ZnO ont été optimisées

    Synergistic Effects of LSPR, SPP, and Waveguide Plasmonic Resonance on the Same Material: A Promising Hypothesis to Enhanced Organic Solar Cells Efficiency

    No full text
    In this work we explore the utilization of plasmonic resonance (PR) in silver nanowires to enhance the performance of organic solar cells. Plasmonic resonance is a phenomenon in which nanoscale conductive materials exhibit oscillation of conduction electrons, resulting in the creation of an electric field. Enhancing light absorption is crucial for improving organic solar cell efficiency and incorporating metallic nanostructures to induce surface plasmon resonance (SPR) shows promise in achieving this goal. We discuss the two key mechanisms of plasmonic effects: far-field scattering and near-field resonance modes. Far-field scattering extends the optical path of incident light, while near-field plasmonic effects involve localized surface plasmon resonance (LSPR) and plasmonic cavity modes, enhancing absorption by strengthening electric fields near the nanostructures. Silver nanowires are the focus of this study, and finite-difference time-domain (FDTD) simulation software is used to investigate their plasmonic resonance behavior in a ZnO/Silver nanowires/ZnO (ZAZ) electrode structure. The simulations reveal the dominance of LSPR in this configuration, with intense electric fields inside the nanowire and propagation into the surrounding medium, offering opportunities for enhanced light absorption in the organic solar cell's active layer

    Plasmonic Ag nanowire network embedded in zinc oxide nanoparticles for inverted organic solar cells electrode

    No full text
    International audienceTransparent Electrodes consisting of silver (Ag) nanowires (NWs) and zinc oxide (ZnO) nanoparticles (NPs) were fabricated by spin-coating. Thus, we demonstrated that by embedding AgNWs into the ZnO NPs, we fabricated a transparent multilayer electrode ZnO NPs/AgNWs/ZnO NPs (ZAZ) with a sheet resistance of 13 Ω/sq and an optical transparency of 88%. The optical properties of the ZAZ structure were investigated and calculated using a FDTD method. The modeling results showed a good agreement with the experimental results. Plasmonic behavior is highlighted. The ZAZ multilayer electrodes were experimentally optimized and were successfully integrated into an inverted organic solar cell based on P3HT:PCBM. A photovoltaic efficiency of 3.53% is obtained on the ITO-free organic solar cells (OSC) and is compared to traditional ITO-based devices with an efficiency of 3.16%. Numerical calculations of the intrinsic absorption of the active layer inside an organic solar cell integrating either ZAZ or ITO are performed. Moreover, we explored numerically, the plasmonic effect created by the AgNWs and how it can influence the absorption inside the active layer of solar cells, in order to take advantage of its electromagnetic field increases. We demonstrate that ZAZ electrodes are a promising alternative to conventional ITO films for high performance inverted OSCs due to better transmission and beneficial plasmonic effect.Highlights• Entirely solution processable electrode/interfacial layer duo.• Organic solar cell efficiency improvement when ZAZ is used instead of ITO.• ZnO nanoparticles allow to reduce roughness by filling holes between wires.• A plasmonic effect of ZAZ electrode is highlighted.• A thin thickness of interfacial layer allows the plasmon to reach the active layer

    Perovskite solar cells for autonomous sensor networks

    No full text
    International audienc
    • …
    corecore