149 research outputs found

    3D-melting features of the irreversibility line in overdoped Bi2_2Sr2_2CuO6_6 at ultra-low temperature and high magnetic field

    Full text link
    We have measured the irreversible magnetization of an overdoped Bi2_2Sr2_2CuO6_6 single crystal up to B=28 T and down to T=60 mK, and extracted the irreversibility line Birr(T)B_{\rm irr}(T): the data can be interpreted in the whole temperature range as a 3D-anisotropic vortex lattice melting line with Lindemann number cL=0.13c_{\rm L}=0.13. We also briefly discuss the applicability of alternative models such as 2D- and quantum melting, and the connection with magnetoresistance experiments.Comment: M2S-HTSC-VI Conference paper (2 pages, 1 figure), using Elsevier style espcrc2.st

    Pecularities of Hall effect in GaAs/{\delta}<Mn>/GaAs/In\timesGa1-\timesAs/GaAs (\times {\approx} 0.2) heterostructures with high Mn content

    Full text link
    Transport properties of GaAs/{\delta}/GaAs/In\timesGa1-\timesAs/GaAs structures containing InxGa1-xAs (\times {\approx} 0.2) quantum well (QW) and Mn delta layer (DL) with relatively high, about one Mn monolayer (ML) content, are studied. In these structures DL is separated from QW by GaAs spacer with the thickness ds = 2-5 nm. All structures possess a dielectric character of conductivity and demonstrate a maximum in the resistance temperature dependence Rxx(T) at the temperature {\approx} 46K which is usually associated with the Curie temperature Tc of ferromagnetic (FM) transition in DL. However, it is found that the Hall effect concentration of holes pH in QW does not decrease below TC as one ordinary expects in similar systems. On the contrary, the dependence pH(T) experiences a minimum at T = 80-100 K depending on the spacer thickness, then increases at low temperatures more strongly than ds is smaller and reaches a giant value pH = (1-2)\cdot10^13 cm^(-2). Obtained results are interpreted in the terms of magnetic proximity effect of DL on QW, leading to induce spin polarization of the holes in QW. Strong structural and magnetic disorder in DL and QW, leading to the phase segregation in them is taken into consideration. The high pH value is explained as a result of compensation of the positive sign normal Hall effect component by the negative sign anomalous Hall effect component.Comment: 19 pages, 6 figure

    On the angular distribution of extensive air showers

    Full text link
    Angular distributions of extensive air showers with different number of charged particles in the range 2.5x10^5--4x10^7 are derived using the experimental data obtained with the EAS MSU array. Possible approximations of the obtained distributions with different empiric functions available in literature, are analysed. It is shown that the exponential function provides the best approximation of the angular distributions in the sense of the chi-squared criterion.Comment: 5 pages including 1 figur

    Spectral Properties of Holstein and Breathing Polarons

    Full text link
    We calculate the spectral properties of the one-dimensional Holstein and breathing polarons using the self-consistent Born approximation. The Holstein model electron-phonon coupling is momentum independent while the breathing coupling increases monotonically with the phonon momentum. We find that for a linear or tight binding electron dispersion: i) for the same value of the dimensionless coupling the quasiparticle renormalization at small momentum in the breathing polaron is much smaller, ii) the quasiparticle renormalization at small momentum in the breathing polaron increases with phonon frequency unlike in the Holstein model where it decreases, iii) in the Holstein model the quasiparticle dispersion displays a kink and a small gap at an excitation energy equal to the phonon frequency w0 while in the breathing model it displays two gaps, one at excitation energy w0 and another one at 2w0. These differences have two reasons: first, the momentum of the relevant scattered phonons increases with increasing polaron momentum and second, the breathing bare coupling is an increasing function of the phonon momentum. These result in an effective electron-phonon coupling for the breathing model which is an increasing function of the total polaron momentum, such that the small momentum polaron is in the weak coupling regime while the large momentum one is in the strong coupling regime. However the first reason does not hold if the free electron dispersion has low energy states separated by large momentum, as in a higher dimensional system for example, in which situation the difference between the two models becomes less significant.Comment: 11 pages, 10 figure

    Agaricoid basidiomycetes of natural park «Nizhnehopersky», «Ust-Medveditsky», «Tsimlyansky sands» Volgograd area

    Full text link
    This paper contains data on agaricoid basidiomycetes Volgograd region. In particular, three natural parks: «Nizhnehopersky», «Ust-Medveditsky», «Tsimlyansky Sands». The list of species and systematic analysis of species. These cannot be considered exhaustive. Require longer studies in these areas

    In-plane optical response of Bi2Sr2CuO6

    Get PDF
    We report on infrared reflectivity measurements of the abab-plane response of superconducting Bi2_2Sr2_2CuO6_6 single crystals. The frequency dependent conductivity has a maximum near 700 cm1^{-1} at room temperature, which shifts to lower frequency and merges with a Drude-peak below 100 K. We attribute the unusual behaviour of the mid-infrared conductivity to low frequency transitions between electronic bands of mainly BiO character near the M\overline{M} point. The linear temperature dependence of the low-frequency resistivity can be followed down to approximately 40 K where it saturates.Comment: Revtex, 4 pages, 4 postscript figures, Phys. Rev. B, in pres

    Theory of Extrinsic and Intrinsic Tunnelling in Cuprate Superconductors

    Full text link
    A theory capable of explaining intrinsic and extrinsic tunnelling conductance in underdoped cuprates has been devised that accounts for the existence of two energy scales, their temperature and doping dependencies. The asymmetry and inhomogeneity seen in extrinsic (normal metal - superconductor (NS)) tunnelling and the normal-state gapped intrinsic (SS) conductance is explained, as well as the superconducting gap and normal state pseudogap and the temperature dependence of the full gap.Comment: 14 pages, 10 figures, misprints correcte

    Possible pseudogap behavior of electron doped high-temperature superconductors

    Full text link
    We have measured the low-energy quasiparticle excitation spectrum of the electron doped high-temperature superconductors (HTS) Nd(1.85)Ce(0.15)CuO(4-y) and Pr(1.85)Ce(0.15)CuO(4-y) as a function of temperature and applied magnetic field using tunneling spectroscopy. At zero magnetic field, for these optimum doped samples no excitation gap is observed in the tunneling spectra above the transition temperature Tc. In contrast, below Tc for applied magnetic fields well above the resistively determined upper critical field, a clear excitation gap at the Fermi level is found which is comparable to the superconducting energy gap below Tc. Possible interpretations of this observation are the existence of a normal state pseudogap in the electron doped HTS or the existence of a spatially non-uniform superconducting state.Comment: 4 pages, 4 ps-figures included, to be published in Phys. Rev. B, Rapid Com
    corecore