5 research outputs found

    Estrogen and Mitochondrial Function in Disease

    Get PDF
    Anecdotal and scientific evidence suggest that the sex hormone estrogen provides significant health benefits in women. Women have higher estrogen levels than men. Circulating estrogen reaches its highest level during the reproductive period and steadily declines with the onset of menopause. The role of estrogen and estrogen receptors in both cellular physiology and pathophysiology has been controversial. Estrogen has anti-inflammatory and anti-oxidant effects, which preserve cell viability during cardiovascular incidents, but it enhances disease progression in the context of breast cancer. Estrogen mediates these responses via activation of estrogen receptor subtypes located in the cell membrane, nucleus, and mitochondrion. Further, transcription of nuclear and mitochondrial genes by estrogen yields products that play an important role in regulating mitochondrial function. Mitochondria are part of a highly dynamic network and undergo fission and fusion, produce cellular energy, adenosine 5′ triphosphate (ATP), and regulate cell death. Herein, we review the cell and receptor specific effects of estrogen on mitochondrial structure, function, and cell death under normal physiological conditions and in the context of cardiovascular disease, inflammation, neurodegeneration, and cancer. Further research is needed to elucidate the specific role of estrogenic control of mitochondria in health and disease

    Impaired Folding of the Mitochondria! Small TIM Chaperones Induces Clearance by the i-AAA Protease

    Get PDF
    The intermembrane space of mitochondria contains a dedicated chaperone network-the small translocase of the inner membrane (TIM) family-for the sorting of hydrophobic precursors. All small TIMs are defined by the presence of a twin CX3C motif and the monomeric proteins are stabilized by two intramolecular disulfide bonds formed between the cysteines of these motifs. The conserved cysteine residues within small TIM members have also been shown to participate in early biogenesis events, with the most N-terminal cysteine residue important for import and retention within the intermembrane space via the receptor and disulfide oxidase, Mia40. In this study, we have analyzed the in vivo consequences of improper folding of small TIM chaperones by generating site-specific cysteine mutants and assessed the fate of the incompletely oxidized proteins within mitochondria. We show that no individual cysteine residue is required for the function of Tim9 or Tim10 in yeast and that defective assembly of the small TIMs induces their proteolytic clearance from mitochondria. We delineate a clearance mechanism for the mutant proteins and their unassembled wild-type partner protein by the mitochondrial ATP-dependent protease, Yme1 (yeast mitochondrial escape 1). (C) 2012 Elsevier Ltd. All rights reserved

    Migration of mitochondrial DNA in the nuclear genome of colorectal adenocarcinoma

    No full text
    Abstract Background Colorectal adenocarcinomas are characterized by abnormal mitochondrial DNA (mtDNA) copy number and genomic instability, but a molecular interaction between mitochondrial and nuclear genome remains unknown. Here we report the discovery of increased copies of nuclear mtDNA (NUMT) in colorectal adenocarcinomas, which supports link between mtDNA and genomic instability in the nucleus. We name this phenomenon of nuclear occurrence of mitochondrial component as numtogenesis. We provide a description of NUMT abundance and distribution in tumor versus matched blood-derived normal genomes. Methods Whole-genome sequence data were obtained for colon adenocarcinoma and rectum adenocarcinoma patients participating in The Cancer Genome Atlas, via the Cancer Genomics Hub, using the GeneTorrent file acquisition tool. Data were analyzed to determine NUMT proportion and distribution on a genome-wide scale. A NUMT suppressor gene was identified by comparing numtogenesis in other organisms. Results Our study reveals that colorectal adenocarcinoma genomes, on average, contains up to 4.2-fold more somatic NUMTs than matched normal genomes. Women colorectal tumors contained more NUMT than men. NUMT abundance in tumor predicted parallel abundance in blood. NUMT abundance positively correlated with GC content and gene density. Increased numtogenesis was observed with higher mortality. We identified YME1L1, a human homolog of yeast YME1 (yeast mitochondrial DNA escape 1) to be frequently mutated in colorectal tumors. YME1L1 was also mutated in tumors derived from other tissues. We show that inactivation of YME1L1 results in increased transfer of mtDNA in the nuclear genome. Conclusions Our study demonstrates increased somatic transfer of mtDNA in colorectal tumors. Our study also reveals sex-based differences in frequency of NUMT occurrence and that NUMT in blood reflects NUMT in tumors, suggesting NUMT may be used as a biomarker for tumorigenesis. We identify YME1L1 as the first NUMT suppressor gene in human and demonstrate that inactivation of YME1L1 induces migration of mtDNA to the nuclear genome. Our study reveals that numtogenesis plays an important role in the development of cancer
    corecore