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Abstract

Anecdotal and scientific evidence suggest that the sex hormone estrogen provides signifi-
cant health benefits in women. Women have higher estrogen levels than men. Circulating 
estrogen reaches its highest level during the reproductive period and steadily declines 
with the onset of menopause. The role of estrogen and estrogen receptors in both cellular 
physiology and pathophysiology has been controversial. Estrogen has anti-inflammatory 
and anti-oxidant effects, which preserve cell viability during cardiovascular incidents, 
but it enhances disease progression in the context of breast cancer. Estrogen mediates 
these responses via activation of estrogen receptor subtypes located in the cell mem-
brane, nucleus, and mitochondrion. Further, transcription of nuclear and mitochondrial 
genes by estrogen yields products that play an important role in regulating mitochon-
drial function. Mitochondria are part of a highly dynamic network and undergo fission 
and fusion, produce cellular energy, adenosine 5′ triphosphate (ATP), and regulate cell 
death. Herein, we review the cell and receptor specific effects of estrogen on mitochon-
drial structure, function, and cell death under normal physiological conditions and in the 
context of cardiovascular disease, inflammation, neurodegeneration, and cancer. Further 
research is needed to elucidate the specific role of estrogenic control of mitochondria in 
health and disease.

Keywords: estrogen, mitochondria, aging, menopause, estrogen receptors

1. Introduction

The term estrogen refers to a family of chemically similar steroid hormones that include 
estrone, estradiol, and estriol. Estrogens are synthesized primarily by the ovarian follicles 
[1]. An important rate limiting step in steroid hormone synthesis is the production of preg-

nenolone in follicular granulosa cells. Cholesterol is transported from the outer to the inner 
mitochondrial membrane by the steroidogenic acute regulatory (StAR) protein, followed  
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by conversion to pregnenolone by cytochrome P450 side chain cleavage (CYP11A1). 
Pregnenolone then diffuses to the theca cells where it is converted to androstenedione and 
then re-routed to the granulosa cells for the aromatase-mediated conversion to estrogen. 
Androstenedione can also be converted to testosterone. Thus, mitochondria play an impor-

tant role in estrogen biosynthesis.

Estrogen serves a major role in determining female secondary sex characteristics during 
development and in regulating the estrous cycle. During puberty and throughout the female 
reproductive cycle, estrogen levels fluctuate, and as women age, sex steroid production 
decreases [1]. Estrogen levels oscillate during the estrous cycle. They are lowest during men-

struation, steadily rise during the follicular stage and reach a maximal level during ovulation. 
If a woman becomes pregnant, estrogen levels will remain high, but if fertilization does not 
occur, hormone levels decline during the luteal phase. Following the luteal phase, menstrua-

tion occurs, and the cycle resumes. As estrogen levels fluctuate during the estrous cycle, mito-

chondria alter the production of pregnenolone accordingly.

Estrogen is a pleiotropic hormone that exerts its effects via both transcriptional and non-
genomic mechanisms. In addition to regulating reproductive function, estrogen exerts 
numerous cytoprotective effects. With respect to atherosclerosis, estrogen regulates levels of 
circulating lipids by stimulating the formation of high density lipoprotein (HDL) and decreas-

ing expression of low density lipoprotein (LDL) [2]. It exerts antioxidant and anti-inflamma-

tory effects by preventing the oxidation of LDL, inhibiting the expression of endothelial cell 
adhesion molecules and stimulating nitric oxide formation [3]. As discussed in this chapter, 
differential responses to estrogen are due to activation of different receptor subtypes. Recent 
studies also suggest that many of the protective responses to estrogen are related to the abil-
ity of the hormone to maintain normal mitochondrial function. Mitochondrial localization of 
estrogen receptors has been shown to regulate mitochondrial gene expression. In this manner, 
estrogen plays an important role in the supporting mitochondrial respiration and adenos-

ine 5′ triphosphate (ATP) production, reducing reactive oxygen species (ROS) formation and 
inhibiting activation of mitochondrial cell death pathways. The goal of this chapter is to dis-

cuss mechanisms by which estrogen regulates mitochondrial signaling and function under 
normal physiological conditions and in the context of disease.

2. Estrogen receptor types

Estrogen modulates cellular function via activation of one of four receptor subtypes: estro-

gen receptor alpha (ERα), estrogen receptor beta (ERβ), G-protein coupled estrogen receptor 
(GPER), and ER-X. ERα was first described in the 1950s as a ligand-activated receptor for 
estrogen, while ERβ was discovered more recently in 1996 [4]. ERs are located throughout the 
cell [5]. Two distinct genes encode ligand-activated ERα and ERβ. These genes and their prod-

ucts are subject to epigenetic modifications and alternative RNA splicing [6–11]. Nuclear ERα 
and ERβ can modulate gene transcription, while localization of these receptors on the cell 
membrane results in the rapid activation of signaling cascades via non-genomic mechanisms. 
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Studies utilizing ERα and ERβ knockout (KO) mice have provided insight into the function of 
each receptor type. Male and female ERα KO mice are infertile, while ERβ KO mice are fertile 
but produce small litters [12–14]. These studies highlight the importance of estrogen in the 
development of reproductive systems of both sexes [14, 15].

ERα and ERβ are also found on the membranes of cellular organelles, including the endo-

plasmic reticulum and the mitochondrion, where they mediate various cellular functions. 
Localization to mitochondria was first confirmed using radioligand binding methods in 
mitochondria isolated from rat uterus and later by immunocytochemistry in rat pancreatic 
acinar cells [16]. MALDI-TOF mass spectrometry studies have shown that mitochondrial 
ERs are identical to ERs located in the nucleus [17]. ERβ is the predominant mitochondrial 
receptor in most tissues: for example ovary, uterus, spermatocytes, cerebral and hippocam-

pal neurons, cardiomyocytes, and endothelial cells [17, 18]. In contrast, the identification of 
mitochondrial ERα has been limited to the uterus, ovary, and the MCF-7 breast cancer cell 
line [18]. The presence of ERs on mitochondria and estrogen responsive elements on the 
mitochondrial DNA suggests a role for estrogen in regulating the structure and/or function 
of the organelle [19].

Estrogen also binds to a GPER on the plasma membrane. GPER specifically binds to estradiol 
and mediates numerous responses including cell proliferation, vasodilation, and regulation 
of glucose metabolism by non-genomic mechanisms [20]. GPER has also been localized to 
intracellular sites. In the endoplasmic reticulum, GPER activation induces calcium release and 
activation of the phosphoinositide 3-kinase (PI3K)-Akt pathway, which induces cell prolifera-

tion [21, 22]. While GPER is not associated with the mitochondria, its regulation of cellular 
calcium handling indirectly impacts mitochondrial function and mitochondrial-induced cell 
death [22, 23]. Calcium uptake by mitochondria results in the opening of the mitochondrial 
permeability transition pore (mPTP) and induction of the intrinsic cell death pathway. GPER-
specific agonist G1 binding to GPER has been shown to attenuate these responses in a rodent 
model of ischemia/reperfusion (I/R) by preventing endoplasmic reticulum calcium release 
[23]. ER-X is an additional estrogen receptor type that is associated with the cell membrane. 
This novel receptor shares sequence homology with ERα and ERβ, which is expressed pri-
marily in the brain during development and becomes re-expressed in response to ischemic 
brain injury [24]. While little is known regarding the function of ER-X, some data suggest that 
it exerts a cytoprotective role in the brain [24].

3. Mitochondrial function

The mitochondria are classically described as the powerhouse of the cell by virtue of its abil-
ity to generate ATP. Physiological processes underlying mitochondrial bioenergetics and 
respiration have been previously reviewed [25]. Under aerobic conditions, mitochondria 
utilize electron transport and a protomotive force to produce ~36 ATP molecules for every 
glucose molecule. Reducing equivalents produced by the Krebs cycle (NADH and FADH

2
) 

are accepted by the respiratory chain at Complex I (NADH Dehydrogenase) and Complex 
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II (Succinate Dehydrogenase), respectively. Electrons are shuttled through the complexes 
with oxygen acting as the final electron acceptor at Complex IV. Concurrently, hydrogen ions 
are pumped from the electronegative mitochondrial matrix into the more positively charged 
inner membrane space by Complexes I, III (cytochrome C reductase), and IV (cytochrome 
C oxidase). The protomotive force thus generated allows hydrogen ions to flow down their 
concentration gradient at Complex V (ATP Synthase), resulting in the formation of ATP. This 
chemiosmotic process is tightly regulated and highly efficient. Although ATP is the primary 
(and often most studied) product of cellular respiration, ROS and thermal energy/heat are 
also generated by mitochondria. ROS include chemical species produced by the incomplete 
reduction of O

2
. These molecules include superoxide anion (O

2
•−), hydrogen peroxide (H

2
O

2
), 

and hydroxyl radical (•OH). Mitochondrial ROS are thought to perform a variety of cell sig-

naling functions under normal physiological conditions.

Mitochondria are highly dynamic organelles that are components of a constantly changing, 
dynamic mitochondrial network. Damaged or old mitochondria can be cleared from the 
cell by autophagy/mitophagy or bulk clearance and degraded by lysosomal enzymes [26]. 
Furthermore, mitochondria can also undergo fission and fusion. Fission is the process by 
which mitochondria bud off from the mitochondrial network. This is regulated by the pro-

teins DRP-1 and FIZZ1. Fusion represents the incorporation of mitochondria in the mitochon-

drial network and is regulated by mitofusin1 (Mfn1), mitofusin2 (Mfn2), or optic atrophy 
1 (OPA1) [27]. These regulatory proteins help to maintain the balance between fission and 
fusion that is required to preserve cell viability. In different disease states, however, this bal-
ance can be disrupted causing mitochondrial dysfunction and cell death.

4. Mitochondria, cell injury, and apoptosis

Manganese superoxide dismutase (MnSOD) and glutathione represent endogenous mol-
ecules that minimize mitochondrial-derived ROS. Mitochondrial injury occurs, however, 
when ROS formation exceeds the capacity for their removal by these antioxidant mecha-

nisms. ROS biochemically modify other molecules to produce cytotoxic species that induce 
cellular injury [28]. For example, ROS induce the formation of 4-hydroxynonenal (HNE), 
a reactive lipid species that is associated with neuronal damage in brains of Parkinson’s 
disease patients [29, 30]. ROS production also leads to cell death via the induction of 
apoptosis. Activation of the intrinsic apoptotic pathway occurs in response to a decrease 
in mitochondrial membrane potential, opening of the mPTP and release of cytochrome C 
[23]. Cytochrome C initiates the pro-apoptotic cascade by activating the initiator caspase 9, 
which in turn cleaves the final effector caspase 3. There are also a number of proteins that 
regulate apoptosis, including anti-apoptotic Bcl-2, and pro-apoptotic Bax and Bad proteins 
[31]. When cytosolic Bax binds to the outer mitochondrial membrane, it induces apoptosis 
by stimulating cytochrome C release. Further, the binding of Bax to Bcl-2 inhibits the anti-
apoptotic effects of Bcl-2, resulting in cell death. The dimerization and localization of this 
group of proteins modulate apoptosis under both basal and pathological conditions and 
can be modified by the cellular microenvironment.
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5. Mitochondrial responses to estrogen

Both nuclear and mitochondrial genes are subject to regulation by estrogen [32]. Nuclear DNA 
encodes proteins that are incorporated in mitochondria and influence their function. For exam-

ple, the binding of estrogen to nuclear ERα induces the expression of peroxisome proliferator-
activated receptor gamma coactivator 1-alpha (PGC1α) [33]. This protein plays an important 
role in mitochondrial biogenesis, a process by which new mitochondria are formed. The mito-
chondrion also contains its own maternally inherited DNA, which encodes 37 genes [25]. A 
recent study in MCF-7 cells showed that estrogen regulates mitochondrial RNA production 
under serum starvation conditions [34]. Subsequent to estrogen treatment, ERα translocated 
to the mitochondria and increased expression of mitochondrial tRNAs used to translate mito-
chondrial proteins. In GH4C1 pituitary cells, treatment with estrogen increases expression of 
mitochondrial-encoded RNA for subunit II of cytochrome C oxidase [35]. In female rats, levels 
of mitochondrial-encoded 16S RNA, a housekeeping gene used as a marker for mitochondrial 
number, are four times higher than males of the same age [36, 37]. Ovariectomy (OVX) in rats 
is characterized by an increase in liver and brain peroxide production and formation of 8-oxo-
2′deoxyguanosine, a marker of mitochondrial DNA damage. These changes were associated 
with a reduction in the antioxidant protein GSH and MnSOD [36]. Estrogen treatment in OVX 
rats reversed these responses [36]. Collectively, these data suggest that increased estrogen lev-
els regulate mitochondrial and nuclear anti-oxidant protein expression.

Estrogen plays an important role in the regulation of apoptosis by stimulating Bcl-2 protein 
expression and translocation to the mitochondria. This is achieved via the Ca2+ regulated ERK 
pathway [38]. The regulation of both Bcl-2 and Bax expression by estrogen has been reported 
in THP-1 macrophages and human monocyte-derived macrophages. Pre-treatment with 
estrogen increased the Bcl-2: Bax ratio, thus increasing cell viability in the presence of pro-
apoptotic stimuli. Estrogen treatment of cortical neurons has also been shown to inhibit glu-
tamate toxicity and improve cell viability by upregulating Bcl-2 expression [39]. In SH-SY5Y 
neuroblastoma cells over-expressing ERβ, the receptor has been shown to interact with the 
pro-apoptotic protein Bad and prevent its binding to Bax, thereby inhibiting apoptosis [40]. 
These data suggest that both estrogen and ERs per se are anti-apoptotic and modulate disease 
pathogenesis. Estrogen also preserves cell viability by altering mitochondrial dynamics. In 
the myocardium of ischemia reperfusion injury rodents, OVX rodents display an increase 
in mitochondrial fusion after injury, which is reversed by estrogen treatment [41] Work in 
isolated cortical astrocytes from male and female postnatal day 1 mice shows that estrogen 
regulates fission and fusion genes in a gender-specific manner [42]. Further, estrogen stimu-
lated mitochondrial biogenesis in skeletal muscle and adipocytes [43, 44]. These data suggest 
that estrogen can strengthen the mitochondrial network by increasing mitochondrial fusion, 
thus preserving mitochondrial function and cell viability.

Estrogen effects on mitochondrial function vary in different cell types. For example, estrogen 
binds specifically to the oligomycin-sensitivity conferring protein of ATP-synthase (Complex 
V) in brain mitochondria and inhibits ATP production [45]. In contrast, another study showed 
that the enzymatic activity of F0F1-ATPase, a Complex V subunit, is higher in mitochondria 
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isolated from the heart than other tissues. Estrogen induced a further increase in cardiac 
ATPase activity implying a direct link between estrogen stimulation and ATP production [45, 
46]. Estrogen can therefore exert different effects on mitochondria from different cell types. 
These differential responses may impact disease pathogenesis.

6. Estrogen, mitochondria, and cardiovascular disease

Cardiovascular disease (CVD) is the leading cause of death in men and women, and American 
Heart Association statistics reveal a significant increase in CVD mortality in women com-

pared to men [47]. Mitochondrial dysfunction has been implicated as a causative factor in 
CVD, with mitochondrial DNA damage being significantly increased in the heart and aorta 
of patients with CVD compared to healthy controls [25, 48–50]. Women do not generally pres-

ent with CVD until the seventh decade, while the incidence of death due to CVD is high in 
men throughout life. This age-dependent increase in CVD in women has been linked to the 
onset of menopause and a reduction in circulating estrogen levels. The “Free Radical Theory 
of Aging” proposes that, with increased age, an increase in free radical formation initiates a 
vicious cycle of ROS formation that causes progressive cell injury [51]. Data suggest that loss 
of the antioxidant and anti-inflammatory effects of estrogen after menopause contributes to 
the development of mitochondrial injury [52, 53]. Thus, maintaining high levels of estrogen 
may increase lifespan and/or health in postmenopausal women.

Studies using experimental animal models of CVD show that OVX increases vascular inflam-

mation/injury in a manner that is prevented by estrogen treatment [54, 55]. Analysis of 
mitochondria isolated from hearts of OVX rats reveals increased levels of apoptotic mark-

ers compared to mitochondria of intact animals. Administration of estrogen to these animals 
significantly attenuated apoptosis [56]. Since mitochondrial damage and apoptosis can be 
mediated by ROS, it has been hypothesized that the estrogen can decrease ROS by activating 
the antioxidant pathway. Treatment of human aortic endothelial cells (HAECs) with estradiol 
upregulates the mitochondrial antioxidant MnSOD by an ERα-dependent mechanism. The 
ability of estrogen to increase MnSOD levels is ablated in ERα KO mice but not in ERβ KO 
mice. Interestingly, while ERβ does not regulate MnSOD expression, it was shown to be essen-

tial for preventing atherosclerotic progression in vivo [57, 58]. These data show that ERs modu-

late mitochondrial antioxidant production and have distinctive vasoprotective mechanisms.

Gender differences have been identified in mitochondrial genes isolated from rat hearts [59]. 
Whole genome microarray analysis showed that expression of genes associated with mito-

chondrial apoptosis pathways is significantly elevated in male mice compared to females. 
In contrast, genes associated with fatty acid and glucose metabolism were upregulated in 
females. Female rats also displayed higher transcription levels for mitochondrial Complexes I 
and IV. These data suggest that genes related to cellular metabolism, including mitochondrial 
respiration, are upregulated in cardiac mitochondria from female rats while genes associ-
ated with mitochondrial apoptosis are increased in males. Whether this difference is directly 
related to the circulating levels of estrogen in vivo is unclear.
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Mitochondrial structure in the heart is influenced by estrogen. The hearts of OVX rats that 
underwent I/R injury had lower levels of mitochondrial respiratory function and increased 
myocardial cell death compared to intact animals. Transmission electron microscopy showed 
that the mitochondria in cardiomyocytes from OVX rats were more disordered within the cell 
and structurally damaged compared to mitochondria from intact animals [41]. Interestingly, 
even male ERα KO mice that underwent cardiac I/R injury display lower coronary blood flow 
rates, increased calcium accumulation, and reduced nitrite production compared to non-isch-
emic hearts. Further, electron microscopic analysis revealed that the mitochondria from ERα KO 
mice were abnormally shaped [60]. These studies suggest that estrogen signaling plays a role in 
regulating mitochondrial structure in both females and males. In another model of I/R injury, 
female wild-type mouse hearts were shown to have better functional recovery and an attenuated 
inflammatory response compared to female ERα KO mice and wild-type male mice [61]. These 
data further suggest the importance of ER signaling as a cardioprotective mechanism in females.

Effects of estrogen on mitochondrial function have been tested in a genetic model of hypertro-
phic cardiomyopathy (cTnT-Q92). Estrogen treatment improved ATP production, the mitochon-
drial respiratory ratio, and diastolic function in OVX cTnT-Q92 mice compared to untreated 
OVX mice [62]. OVX in cTnT-Q92 mice attenuated the expression of the mitochondrial biogen-
esis genes PGC1α, peroxisome proliferator-activated receptor alpha (PPARα), mitochondrial 
transcription factor A (tFAM), and the antioxidant protein nuclear respiratory factor 1 (NRF-
1). Estrogen treatment improved cardiac mitochondrial organization and cristae structure and 
increased mitochondrial biogenesis. These data directly show that estrogen exerts cytoprotective 
effects at the level of the mitochondrion that translate into an improvement in cardiac function.

7. Estrogen, mitochondria, and inflammation

Macrophages contribute to the chronic inflammation associated with many diseases including 
CVD and neurodegeneration. Macrophages display plasticity in that they may adopt various 
phenotypes. The differentiation of these cells is highly dependent on the local microenviron-
ment in which they are situated. M1 macrophages are pro-inflammatory and are induced by 
cytokines and lipopolysaccharide (LPS). M2 macrophages are anti-inflammatory, play a role 
in wound healing, and are induced by IL-4 and IL-13 [63, 64]. The metabolic characteristics 
of M1 and M2 macrophages are different. M1 macrophages rely on glycolysis for ATP forma-
tion while M2 macrophages are dependent on mitochondrial oxidative phosphorylation for 
energy [63, 64]. Damage to mitochondria induced by inflammatory stimuli can exacerbate 
cellular injury [65]. It was shown that both ERα knockout and mitochondrial dysfunction 
inhibit the IL-4 mediated conversion to macrophages from an M1 to an M2 phenotype [64, 66].

Treatment of macrophages with LPS/interferon-γ (IFN-γ) favors an increase in the M1 pheno-
type. In macrophages isolated from premenopausal women, estrogen treatment was shown 
to reduce the M1/M2 ratio in cells exposed to LPS/IFN-γ to a greater extent than macrophages 
isolated from postmenopausal women [67]. Recent studies from our group have shown 
that there is a significant decrease in ERα expression in macrophages from postmenopausal 
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women compared to premenopausal women while estrogen therapy was able to preserve 
ERα expression [68]. These data imply that estrogen and ER levels play a crucial role in mac-

rophage polarization, but the role of estrogen on the mitochondrial function in these groups is 
still unknown. Determining the role of estrogen on the mitochondria and how it affects mac-

rophage phenotype can help us to better understand the anti-inflammatory roles of estrogen.

8. Estrogen, mitochondria, and neurodegeneration

Neurodegenerative disorders such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) 
are characterized by the progressive deterioration and death of specific neuron types in the 
brain [69]. It is well known that mitochondrial dysfunction plays a pathogenic role in neurode-

generation [69]. AD is characterized by atrophy of the cortex and hippocampus. Additionally, 
increases in glucose metabolism and a reduction in the activities of mitochondrial Complexes 
I, III, and IV in the brain have been reported [69, 70]. Plaques containing amyloid beta and 
tau protein can become incorporated in the remaining brain cells [69]. These inclusions are 
known to increase oxidative stress and mitochondrial dysfunction.

In PD, the loss of dopaminergic neurons in the substantia nigra contributes to the devel-
opment of motor disturbances. The protein alpha synuclein becomes entangled with these 
neurons, resulting in ROS production, mitochondrial dysfunction, and neuronal cell death 
[71]. A decrease in mitochondrial Complex I activity has been observed in postmortem brains 
of PD patients that is linked to a reduction in oxidative phosphorylation [72]. In vivo and in 

vitro models of PD utilize Complex I inhibitors, such as rotenone, to induce PD-like systems 
to study disease mechanisms [73, 74]. Most PD cases are of unknown etiology; however, data 
suggest that defects in the expression of the mitochondrial clearance genes parkin, pink1, and 
DJ-1 may be an underlying mechanism [69].

Gender differences have been identified in the pathology of both AD and PD [75, 76]. These 
include alterations in brain weight, regional atrophy, distribution of white and gray matter, 
cerebral blood flow, expression of neurotransmitter transporters and receptors, and age of onset 
[77]. In the case of PD, there is also an increased incidence of the disease in men compared to 
women [78, 79]. The gender difference in neurodegenerative phenotypes has led to the hypoth-

esis that estrogen exerts neuroprotective effects and that these effects are mediated at the level 
of the mitochondrion [80]. In mouse spinal cord neurons, estrogen treatment increased mRNA 
levels of nuclear-encoded mitochondrial electron transport chain genes ND1, CytB, Cox2, and 
ATP6 [80]. ERα has been identified in the mitochondria of endothelial cells in the brain and 
forebrain. In these cells, estrogen increased expression of cytochrome C and reduced ROS for-

mation [81]. ERβ has been localized to hippocampal mitochondria [17, 81, 82]. Hippocampal 
cells isolated from ERβ KO mice had lower mitochondrial membrane potential and were more 
resistant to oxidative stress compared to control mice [83]. Taken together, these data suggest 
opposing effects of ERα and ERβ in the brain. More cell-type specific studies are needed to 
better understand the role of these ERs in the brain and to help clarify these opposing views.

Estrogen also interacts with mitochondrial proteins in a non-genomic manner. Under in vitro 

conditions, estrogen had no effect on sodium dependent calcium influx from mitochondria 
isolated from synaptosomes and increased mitochondrial calcium efflux [84]. Thus, estrogen 
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prevented mitochondrial calcium overload. Higher levels of cytoplasmic calcium increase 
mitochondrial ATP production and cause neuron-specific changes in cellular signaling. In 
aged, post-reproductive rodents, loss of estrogen is associated with a decrease in brain weight 
and a concomitant increase in the utilization of ketone bodies and fatty acids [85]. This was 
associated with a decrease in metabolic substrates for mitochondrial ATP production that 
was further decreased in an AD mouse model [85]. Taken together, we and others propose 
that reductions in estrogen levels that cause decreased mitochondrial function during the 
postmenopausal period may explain the increased incidence of AD in women at this stage.

Estrogen preserves mitochondrial structure/function by upregulating the mitochondrial anti-
oxidant enzyme MnSOD in the brain of female rodents [37, 86, 87]. In SK-N-SH neuroblastoma 
cells, estrogen inhibits the effects of the mitochondrial Complex II inhibitor, 3-nitroprionic 
acid (3-NPA), by preserving mitochondrial ATP production and inhibiting the 3-NPA induced 
hydrogen peroxide and peroxynitrite formation [88]. These data suggest that estrogen also 
plays an anti-oxidant role in the brain. This has led many to hypothesize that the anti-oxidant 
effects of estrogen may play a role in slowing disease pathogenesis.

Estrogen also regulates mitochondrial dynamics in astrocytes in a gender-dependent manner. 
It reduces expression of the fusion protein Mfn1 in astrocytes isolated from male rodents but 
has no effect on astrocytes obtained from females [80]. Treatment of cortical primary astro-

cytes with estrogen increases the expression of fission (Dyn 1 and Fis 1) and fusion (Mfn2) 
proteins to a greater extent in female mice than males. The upregulation of both fission and 
fusion proteins suggests that mitochondrial network is more dynamic in females than males. 
Although the exact mechanisms and reasons for the differences in fission and fusion regula-

tion between male and female rodents are unknown, these responses may explain the sexual 
dimorphism seen in neurodegenerative diseases and other pathologies.

9. Estrogen, mitochondria, and cancer

Cancer is the second leading cause of death in the United States, and, among all cancers, 
breast cancer is the second most commonly diagnosed cancer in women. Breast tumor cells 
that express estrogen receptors are classified as ER-positive and account for 80% of all breast 
cancers [89]. Further, the Women’s Health Initiative Study showed that menopausal hormone 
therapy (MHT) increases the incidence of breast cancer in women compared to controls [90]. 
Modern day cancer treatment principally focuses on identifying estrogen signatures in breast 
cancers, and suppression of estrogen receptor function is a routine therapeutic strategy.

Estrogen is known to regulate mitochondrial function in the context of breast cancer by several 
mechanisms. First, it has been shown to alter mitochondrial morphology. Administration of 
physiologically relevant doses of estrogen to MCF-7 breast cancer cell lines results in enlarge-

ment of mitochondria [91]. Mitochondrial cristae adopt an abnormal structure that is reminiscent  
of mitochondria that are oxygen-deprived and rely on glycolysis for ATP formation. This change 
in structure was associated with a 2.5-fold increase in the mitochondrial content of ERα and 
ERβ and an increase in the mitochondrial expression of cytochrome C oxidase subunits I and 
II. Alternatively, activation of cell membrane estrogen receptors is reported to induce changes 
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in the cytoskeleton that indirectly influences mitochondrial structure [92]. Alteration in mito-
chondrial structure not only affects the capacity of the energy production but also influences 
other crucial functions such as calcium signaling, ROS production, or biosynthetic processes.

Second, estrogen induces cellular ROS production in cancer cells by three main pathways: 
(1) direct inhibition of respiratory chain complexes; (2) accumulation of calcium within mito-
chondria; and (3) inhibition of the antioxidant response element (ARE) [92]. The increase in 
ROS generation by the mitochondria and the decrease in antioxidant capacity cause a cellular 
shift to high ROS production that plays an important role in cancer cell proliferation and cell 
damage. Estrogen also promotes ROS formation in breast cancer cells by inducing cyclin D1 
gene expression [93]. NRF-1 regulates the expression of several nuclear-encoded mitochon-
drial genes [94] that encode respiratory protein subunits, mtDNA transcription/replication 
machinery, components of heme biosynthesis, and mitochondrial protein import [95]. Cyclin 
D1 phosphorylates NRF-1, resulting in repression of its activity. This inactivation of NRF-1 
reduces mitochondrial activity and shift glucose metabolism toward glycolysis [96]. The 
reduction in mitochondrial ATP production, in part, increases mitochondrial ROS production.

Another characteristic of cancer cells is that they highjack apoptotic pathways in order to 
evade cell death. When normal cells are exposed to UV radiation, the generation of mito-
chondrial ROS activates c-jun N-terminal kinase (JNK) and protein kinase C (PKC)-δ. These 
signaling molecules trigger the translocation of Bax to the mitochondria and induce apopto-
sis. In breast cancer cells exposed to UV radiation, estrogen attenuates cytochrome C release, 
preserves mitochondrial membrane potential, and inhibits apoptotic cell death [97]. Other 
data show that addition of estrogen to MCF-7 breast cancer cells induced apoptotic signaling 
through the extrinsic cell death Fas ligand pathway. This response was accompanied by an 
increase in the expression of anti-apoptotic Bcl-2 [98].

The role of estrogen receptors in breast cancer development has been known for almost over 
30 years. Subsequent studies strongly suggested that ER status is the single most important 
predictive and prognostic biomarker in breast cancer. Clinicians use several strategies to 
battle estrogen-sensitive breast cancer, which affect not only estrogen levels but also mito-
chondrial function. One approach is to block ovarian function. Ovarian ablation can either be 
performed surgically to remove the ovaries (oophorectomy) or by radiation. An alternative 
approach is to temporarily suppress the ovarian function pharmacologically using gonado-
tropin-releasing hormone (GnRH) agonists. GnRH interferes with signals that are produced 
by the pituitary gland that stimulate the ovaries to produce estrogen. GnRH agonists also 
act by inducing mitochondrial depolarization, thereby decreasing mitochondrial oxidative 
capacity. Aromatase inhibitors represent another pharmacological approach to inhibit estro-
gen synthesis. Addition of aromatase inhibitors to MCF-7 cells was shown to induce caspase 
9 expression [99]. Thus, activation of the intrinsic cell death pathway may be an alternative 
mechanism by which aromatase inhibitors decrease cancer progression. Selective estrogen 
receptor modulators (SERMs) are another class of drugs that are used for treatment of breast 
cancers. The SERM tamoxifen blocks the ability of estrogen to stimulate the growth of breast 
cancer cells. Tamoxifen has also been shown to induce mitochondrial ROS and apoptosis by 
increasing mitochondrial nitric oxide synthase (mtNOS) [100]. Tamoxifen decreases cellular 
respiration, increases mitochondrial cytochrome C release, and increases mitochondrial lipid 
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peroxide formation. These data suggest that tamoxifen induces the mitochondrial cell death 
pathway. While current breast cancer therapeutics inhibit both estrogen signaling and mito-
chondrial function, the development of next generation drugs that can more efficiently inhibit 
these processes is required.

10. Conclusions

Estrogen is a multi-functional hormone that exerts its effects by both transcriptional and non-
genomic mechanisms. Nuclear transcriptional responses are classically induced by binding of 
estrogen to ERα and ERβ. Estrogen-dependent gene transcription plays an important role in 
the development of female reproductive structures and regulation of the estrous cycle. The 
local production of estrogen is now also thought to regulate physiological responses in males. 
Non-genomic responses to estrogen are more rapid and include induction of signaling path-
ways that promote cell proliferation. The differential expression of ERs in different cell types 
and cellular loci dictates their specific function.

Studies in recent years have defined a role for estrogen in the regulation of mitochondrial 
structure and function. Estrogen increases expression of respiratory complexes, antioxidant 
molecules, and anti-apoptotic factors that directly impact mitochondrial structure and func-
tion. Aging in women is associated with a reduction in estrogen formation and the develop-
ment of mitochondrial dysfunction. An increase in free radical damage in cells also occurs 
with aging. Damaged mitochondria are more likely to produce additional ROS, thus initiating 
a vicious cycle that progressively degrades cellular function. This includes estrogen biosyn-
thesis. Transgenic mice with a mutation in the inner mitochondrial membrane peptidase-2 
(IMMP-2) had hyperpolarized mitochondria, which produced increased levels of superoxide 
and ATP and resulted in impaired ovulation and reduced fertility [101]. Other data show that 
defective mitochondrial DNA polymerase activity induces mitochondrial dysfunction and 
infertility in mice [102]. It follows that cytoprotective responses to estrogen at the level of the 
mitochondrion are ablated. Thus, a reciprocal relationship exists between estrogen and mito-
chondrial function. Under normal physiological conditions, mitochondria are critical media-
tors of estrogen biosynthesis and are also targets for estrogen action.

Strong evidence suggests that estrogen plays a major role in promoting the proliferation of 
both normal and the neoplastic breast cancer cells. However, cancer represents a unique sce-
nario in which estrogen exerts tumorigenic responses in susceptible cells. Prolonged expo-
sure to high levels of estrogen is associated with an increased incidence of breast cancer, 
which supports models of estrogen-induced carcinogenesis. In breast cancer cells, estrogen is 
shown to not only stimulate the cell proliferation but also inhibit apoptotic pathways, which 
can therefore lead to uncontrolled tumor growth. Estrogen increases mitochondrial ROS pro-
duction that can also promote cancer progression. Further research is needed to expand our 
understanding of how estrogen induces carcinogenesis.

Estrogen and ER signaling in the mitochondria play an important role in health and disease. 
We have shown that estrogen effects are cell type and receptor type specific, which explains 
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the varied effects of estrogen treatment described in this review. We also understand that 
despite the protective role of estrogen in inflammation, cardiovascular disease, and neuro-

degeneration, it promotes breast cancer through both nuclear and mitochondrial regulation. 
Further research is needed to understand the specific mechanisms of estrogen-induced mito-

chondrial changes in health and disease.
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