28 research outputs found

    General treatment for stereo-dynamics of state-to-state chemi-ionization reactions

    Get PDF
    The microscopic evolution of elementary chemical reactions remains challenging to describe, as a plethora of parallel channels often determines reaction dynamics. Here the authors propose a theoretical approach to formulate the optical potential for Ne*(3P2,0) chemi-ionizations as a prototype gas-phase oxidation process

    Measurements of ionization cross sections by molecular beam experiments: information content on the imaginary part of the optical potential

    Get PDF
    In this work, we present and analyze in detail new and recent ionization cross section and mass spectrum determinations, collected in the case of He*, Ne*-H2O, -H2S, and -NH3 ionizing collisions. These sets of data, obtained under the same experimental conditions, are relevant to identify differences in the autoionization stereodynamics of the three hydrogenated molecules and on the selective role of the imaginary part of the optical potential. We demonstrate that in these autoionization processes hydrogen and halogen bonds are competing because they are controlling both real and imaginary components of the optical potential that drives the complete reaction dynamics. In particular, we found that both components critically depend on the angular and radial approach between the reagent partners in determining the collision dynamics

    Subthreshold Ionization of Weakly Bound Complexes: StochasticAnalysis of the Role of the Rydberg Quasicontinuum

    Get PDF
    Recent evidence for subthreshold ionization (i.e. electron loss at energies less than anticipated from vertical transitions assuming adiabatic separation of nuclear motion) points at the role of nonadiabatic coupling of high Rydberg terms of molecules. Sinai's billiard model for the chaotic motion of the Rydberg electron, that leads to a diffusion over the energy ladder as a result of electronic–vibrational exchange, is suggested as the classical mechanism of autoionization. A quantum expression for the branching ratio between autoionization and spontaneous fluorescence is obtained and discussed with reference to experimental results on associative ionization in atomic collisions and on laser ionization of van der Waals diatomics

    Molecular Fragmentation of Acetylene by VUV Double Photoionization

    Get PDF
    Acetylene is a simple molecule of interest for interstellar medium (ISM) and planetary atmospheres. The presence of C2H2 was detected by IR spectroscopic measurements. Acetylene was also found as a minor component in the atmosphere of gas giants like the planet Jupiter, in the atmosphere of Saturn's satellite Titan, and in comets, where photochemical experiments have demonstrated that this simple hydrocarbon is a likely precursor of C2, a widely observed component in such environments. It has to be noted that the presence in planetary atmospheres and ISM of Vacuum Ultra Violet (VUV) light's photons as well as cosmic rays makes highly probable the double photoionization of molecular species with the production of molecular dications producing subsequent dissociation into ionic fragments having a high kinetic energy content of several eV. This translational energy is sufficient in some cases to allow ions escape from the upper atmosphere of some planet of the Solar System, as Venus, Mars and Titan, into space. In this contribution we present the experimental study of the microscopic dynamics of the two-body dissociation reactions of the C2H2+2 dication, induced by the double ionization of acetylene molecules by VUV photons in the energy range of 31.9–50.0 eV. The photoionizing agent was a tunable synchrotron radiation beam, while ion products are revealed by coupling photoelectron-photoion-photoion-coincidence and ion imaging techniques. The measured angular distributions and kinetic energy of product ions exhibit significant changes (as the photon energy increases) for the three leading dissociation reactions producing H++C2H+, C++CH2+, and CH++CH+, providing detailed information on the fragmentation dynamics of the C2H22+ dication

    Double photoionization of propylene oxide: a coincidence study of the ejection of a pair of valence-shell electrons

    Get PDF
    Propylene oxide, a favorite target of experimental and theoretical studies of circular dichroism, was recently discovered in interstellar space, further amplifying the attention to its role in the current debate on protobiological homochirality. In the present work, a photoelectron-photoion-photoion coincidence technique, using an ion-imaging detector and tunable synchrotron radiation in the 18.0-37.0 eV energy range, permits us (i) to observe six double ionization fragmentation channels, their relative yields being accounted for about two-thirds by the couple (C2H4+, CH2O+) and one-fifth by (C2H3+, CH3O+); (ii) to measure thresholds for their openings as a function of photon energy; and (iii) to unravel a pronounced bimodality for a kinetic-energy-released distribution, fingerprint of competitive non-adiabatic mechanisms

    Photocatalytic Activity in CH

    Get PDF
    Some TiO2 powders, prepared from titanium(IV)tetraisopropoxide by the sol-gel method and thermally treated between 100 and 1000∘C, have been characterized by X-ray powder diffraction and by nitrogen adsorption and desorption at 77 K to calculate the BET-specific surface area, from which the micropore volume and the external surface area can be derived. The photocatalytic activity (ka) of the above powders has been evaluated considering the TiO2-sensitized photo-oxidation of 4-methoxybenzyl alcohol in CH3CN as the test reaction. The decrease of ka have been related to the decrease of the BET surface area, the micropore volume, and the external surface area of the TiO2 powders, but a satisfactory linear correlation is observed only for the last superficial parameter

    The Possible Role of Penning Ionization Processes in Planetary Atmospheres

    No full text
    In this paper we suggest Penning ionization as an important route of formation for ionic species in upper planetary atmospheres. Our goal is to provide relevant tools to researchers working on kinetic models of atmospheric interest, in order to include Penning ionizations in their calculations as fast processes promoting reactions that cannot be neglected. Ions are extremely important for the transmission of radio and satellite signals, and they govern the chemistry of planetary ionospheres. Molecular ions have also been detected in comet tails. In this paper recent experimental results concerning production of simple ionic species of atmospheric interest are presented and discussed. Such results concern the formation of free ions in collisional ionization of H2O, H2S, and NH3 induced by highly excited species (Penning ionization) as metastable noble gas atoms. The effect of Penning ionization still has not been considered in the modeling of terrestrial and extraterrestrial objects so far, even, though metastable helium is formed by radiative recombination of He+ ions with electrons. Because helium is the second most abundant element of the universe, Penning ionization of atomic or molecular species by He*(23S1) is plausibly an active route of ionization in relatively dense environments exposed to cosmic rays

    Precursor state of chemi-ionization reactions and confinement of valence electrons by anisotropic intermolecular forces

    Get PDF
    Modifications in atomic alignment and in molecular alignment/orientation determine a different structure of the adduct, formed by collisions of reagents, which represents the precursor state of many elementary chemical–physical processes. The following evolution of the system is directly controlled by the confinement of interacting partners in such a precursor state. However, a deep characterization of these phenomena is still today not fully available, especially when weak intermolecular forces are operative, although the inquiry is of general relevance for the control of the stereodynamics of processes, occurring under a variety of conditions both in gas phase and at surface. In this paper recent advances in the knowledge of the selective role of atomic alignment and molecular orientation effects on the stereodynamics of chemi-ionization reactions will be presented and discussed. These advances represent a basic step along a path whose final target is the complete and internally consistent rationalization and revaluation of the experimental findings already obtained, and published, in our and in other laboratories on chemi-ionization reactions involving as reagent molecules which are of great relevance in several fields. The basic idea is to export important guidelines provided by a recent detailed study of chemi-ionization of noble gas atoms to more complex reactions involving molecules. The main focus of the present paper is on the quantum confinement effects of valence electrons within the reaction transition state

    Transformation of stainless steel slag toward a reactive cementitious binder

    No full text
    Argon oxygen decarburization (AOD) slag represents more than 50 wt% of the slag from stainless steel production. Although some applications are available,e.g., as aggregates for road constructions or fertilizers, they are characterized by low economic value and limited applicability. In order to increase the economic value of AOD slag, alternative applications have been proposed, e.g., as partial or full replacement for Ordinary Portland Cement (OPC). The work presented here investigates whether the adaptation of the AOD slag chemistry within a high temperature process leads to an improvement of its hydraulic properties and thereby can demonstrate its potential to be converted into a hydraulic binder suit able for OPC replacement. For this purpose, three synthetic AOD slags with basicities(CaO/SiO2) of 2.0, 2.2, and 2.4 were synthesized, and the effect of the CaO/SiO2 ratio on the material stability, the amount of tri-calcium silicate formed, and their hydraulic properties investigated. X-ray diffraction, scanning electron microscope(SEM), and isothermal calorimetry analysis were used to characterize the microstructure and the hydraulic activity. The results show that the proposed method is indeed a promising way to stabilize a stainless steel AOD slag and con-vert it into a hydraulic binder.status: publishe
    corecore