462 research outputs found

    The end of the cosmic ray spectrum

    Get PDF
    Recent results from the Pierre Auger Observatory are presented, focusing on a measurement of the cosmic-ray energy spectrum above 10^18 eV, cosmic-ray composition, and the anisotropy in the cosmic ray arrival directions. The flux of cosmic rays can be well described by a broken power-law, with a flattening of the spectrum above 4x10^18 eV and a softening of the spectrum beginning at about 3x10^19 eV. The flux suppression at highest energies is consistent with the predictions of Greisen, and Zatsepin and Kuzmin. Longitudinal development of cosmic-ray air showers provides information on the mass of the primary particle. When compared to model predictions, our measurements of the mean and spread of the longitudinal position of the shower maximum are indicating a composition transition from light to heavier with increasing energy. For highest energies in our data-set we observe evidence for a correlation between the cosmic-ray arrival directions and the nearby extragalactic objects.Comment: 8 pages, 5 figures, LC10 Workshop on "New Physics: complementarities between direct and indirect searches", INFN Frascati, 30 November - 3 December 201

    A likelihood method to cross-calibrate air-shower detectors

    Full text link
    We present a detailed statistical treatment of the energy calibration of hybrid air-shower detectors, which combine a surface detector array and a fluorescence detector, to obtain an unbiased estimate of the calibration curve. The special features of calibration data from air showers prevent unbiased results, if a standard least-squares fit is applied to the problem. We develop a general maximum-likelihood approach, based on the detailed statistical model, to solve the problem. Our approach was developed for the Pierre Auger Observatory, but the applied principles are general and can be transferred to other air-shower experiments, even to the cross-calibration of other observables. Since our general likelihood function is expensive to compute, we derive two approximations with significantly smaller computational cost. In the recent years both have been used to calibrate data of the Pierre Auger Observatory. We demonstrate that these approximations introduce negligible bias when they are applied to simulated toy experiments, which mimic realistic experimental conditions.Comment: 10 pages, 7 figure

    Temperature Dependence of Hall Response in Doped Antiferromagnets

    Full text link
    Using finite-temperature Lanczos method the frequency-dependent Hall response is calculated numerically for the t-J model on the square lattice and on ladders. At low doping, both the high-frequency RH* and the d.c. Hall coefficient RH0 follow qualitatively similar behavior at higher temperatures: being hole-like for T > Ts~1.5J and weakly electron-like for T < Ts. Consistent with experiments on cuprates, RH0 changes, in contrast to RH*, again to the hole-like sign below the pseudogap temperature T*, revealing a strong temperature variation for T->0.Comment: LaTeX, 4 pages, 4 figures, submitted to PR

    Tracking of urban aerosols using combined LIDAR-based remote sensing and ground-based measurements

    Get PDF
    A measuring campaign was performed over the neighboring towns of Nova Gorica in Slovenia and Gorizia in Italy on 24 and 25 May 2010, to investigate the concentration and distribution of urban aerosols. Tracking of two-dimensional spatial and temporal aerosol distributions was performed using scanning elastic LIDAR, operating at 1064 nm. In addition, PM&lt;sub&gt;10&lt;/sub&gt; concentrations of particles, NO&lt;sub&gt;x&lt;/sub&gt; concentrations and meteorological data were continuously monitored within the LIDAR scanning region. Based on the data we collected, we investigated the flow dynamics and the aerosol concentrations within the lower troposphere and found an evidence for daily aerosol cycles. We observed a number of cases with spatially localized increased LIDAR returns, which are associated with the presence of point sources of particulate matter. Daily aerosol concentration cycles were also clearly visible with a peak in aerosol concentration during the morning rush hours and daily plateau at around 17:00 Central European Time. We also found that horizontal atmospheric extinction at the height of 200 m, averaged in limited region with a radius of 300 m directly above the ground-based measuring site, was linearly correlated to the PM&lt;sub&gt;10&lt;/sub&gt; concentration with a correlation coefficient of 0.84. When considering the average of the horizontal atmospheric extinction over the entire scanning region, a strong dependence on traffic conditions (concentration of NO&lt;sub&gt;x&lt;/sub&gt;) in the vicinity of the ground-based measuring site was observed

    Search for hidden-photon dark matter with the FUNK experiment

    Full text link
    Many extensions of the Standard Model of particle physics predict a parallel sector of a new U(1) symmetry, giving rise to hidden photons. These hidden photons are candidate particles for cold dark matter. They are expected to kinetically mix with regular photons, which leads to a tiny oscillating electric-field component accompanying dark matter particles. A conducting surface can convert such dark matter particles into photons which are emitted almost perpendicularly to the surface. The corresponding photon frequency follows from the mass of the hidden photons. In this contribution we present a preliminary result on a hidden photon search in the visible and near-UV wavelength range that was done with a large, 14 m2 spherical metallic mirror and discuss future dark matter searches in the eV and sub-eV range by application of different detectors for electromagnetic radiation.Comment: Contribution to the 35th International Cosmic Ray Conference ICRC2017, 10 to 20 July, 2017, Bexco, Busan, Korea. arXiv admin note: text overlap with arXiv:1711.0296

    Thermodynamic and diamagnetic properties of weakly doped antiferromagnets

    Full text link
    Finite-temperature properties of weakly doped antiferromagnets as modeled by the two-dimensional t-J model and relevant to underdoped cuprates are investigated by numerical studies of small model systems at low doping. Two numerical methods are used: the worldline quantum Monte Carlo method with a loop cluster algorithm and the finite-temperature Lanczos method, yielding consistent results. Thermodynamic quantities: specific heat, entropy and spin susceptibility reveal a sizeable perturbation induced by holes introduced into a magnetic insulator, as well as a pronounced temperature dependence. The diamagnetic susceptibility introduced by coupling of the magnetic field to the orbital current reveals an anomalous temperature dependence, changing character from diamagnetic to paramagnetic at intermediate temperatures.Comment: LaTeX, 10 pages, 10 figures, submitted to Phys. Rev.

    Low Temperature Lanczos Method

    Full text link
    We present a modified finite temperature Lanczos method for the evaluation of dynamical and static quantities of strongly correlated electron systems that complements the finite temperature method (FTLM) introduced by Jaklic and Prelovsek for low temperatures. Together they allow accurate calculations at any temperature with moderate effort. As an example we calculate the static spin correlation function and the regular part of the optical conductivity of the one dimensional Hubbard model at half-filling and show in detail the connection between the ground state and finite temperature method. By using Cluster Perturbation Theory (CPT), the finite temperature spectral function is extended to the infinite system, clearly exhibiting the effects of spin-charge separation.Comment: 4 pages, 4 figure

    New interpretation of variational principles for gauge theories. I. Cyclic coordinate alternative to ADM split

    Full text link
    I show how there is an ambiguity in how one treats auxiliary variables in gauge theories including general relativity cast as 3 + 1 geometrodynamics. Auxiliary variables may be treated pre-variationally as multiplier coordinates or as the velocities corresponding to cyclic coordinates. The latter treatment works through the physical meaninglessness of auxiliary variables' values applying also to the end points (or end spatial hypersurfaces) of the variation, so that these are free rather than fixed. [This is also known as variation with natural boundary conditions.] Further principles of dynamics workings such as Routhian reduction and the Dirac procedure are shown to have parallel counterparts for this new formalism. One advantage of the new scheme is that the corresponding actions are more manifestly relational. While the electric potential is usually regarded as a multiplier coordinate and Arnowitt, Deser and Misner have regarded the lapse and shift likewise, this paper's scheme considers new {\it flux}, {\it instant} and {\it grid} variables whose corresponding velocities are, respectively, the abovementioned previously used variables. This paper's way of thinking about gauge theory furthermore admits interesting generalizations, which shall be provided in a second paper.Comment: 11 page

    Measurements of π±\pi^\pm, K±K^\pm, KS0K^0_S, Λ\Lambda and proton production in proton-carbon interactions at 31 GeV/cc with the NA61/SHINE spectrometer at the CERN SPS

    Get PDF
    Measurements of hadron production in p+C interactions at 31 GeV/c are performed using the NA61/ SHINE spectrometer at the CERN SPS. The analysis is based on the full set of data collected in 2009 using a graphite target with a thickness of 4% of a nuclear interaction length. Inelastic and production cross sections as well as spectra of π±\pi^\pm, K±K^\pm, p, KS0K^0_S and Λ\Lambda are measured with high precision. These measurements are essential for improved calculations of the initial neutrino fluxes in the T2K long-baseline neutrino oscillation experiment in Japan. A comparison of the NA61/SHINE measurements with predictions of several hadroproduction models is presented.Comment: v1 corresponds to the preprint CERN-PH-EP-2015-278; v2 matches the final published versio
    corecore