462 research outputs found
The end of the cosmic ray spectrum
Recent results from the Pierre Auger Observatory are presented, focusing on a
measurement of the cosmic-ray energy spectrum above 10^18 eV, cosmic-ray
composition, and the anisotropy in the cosmic ray arrival directions.
The flux of cosmic rays can be well described by a broken power-law, with a
flattening of the spectrum above 4x10^18 eV and a softening of the spectrum
beginning at about 3x10^19 eV. The flux suppression at highest energies is
consistent with the predictions of Greisen, and Zatsepin and Kuzmin.
Longitudinal development of cosmic-ray air showers provides information on the
mass of the primary particle. When compared to model predictions, our
measurements of the mean and spread of the longitudinal position of the shower
maximum are indicating a composition transition from light to heavier with
increasing energy. For highest energies in our data-set we observe evidence for
a correlation between the cosmic-ray arrival directions and the nearby
extragalactic objects.Comment: 8 pages, 5 figures, LC10 Workshop on "New Physics: complementarities
between direct and indirect searches", INFN Frascati, 30 November - 3
December 201
A likelihood method to cross-calibrate air-shower detectors
We present a detailed statistical treatment of the energy calibration of
hybrid air-shower detectors, which combine a surface detector array and a
fluorescence detector, to obtain an unbiased estimate of the calibration curve.
The special features of calibration data from air showers prevent unbiased
results, if a standard least-squares fit is applied to the problem. We develop
a general maximum-likelihood approach, based on the detailed statistical model,
to solve the problem. Our approach was developed for the Pierre Auger
Observatory, but the applied principles are general and can be transferred to
other air-shower experiments, even to the cross-calibration of other
observables. Since our general likelihood function is expensive to compute, we
derive two approximations with significantly smaller computational cost. In the
recent years both have been used to calibrate data of the Pierre Auger
Observatory. We demonstrate that these approximations introduce negligible bias
when they are applied to simulated toy experiments, which mimic realistic
experimental conditions.Comment: 10 pages, 7 figure
Temperature Dependence of Hall Response in Doped Antiferromagnets
Using finite-temperature Lanczos method the frequency-dependent Hall response
is calculated numerically for the t-J model on the square lattice and on
ladders. At low doping, both the high-frequency RH* and the d.c. Hall
coefficient RH0 follow qualitatively similar behavior at higher temperatures:
being hole-like for T > Ts~1.5J and weakly electron-like for T < Ts. Consistent
with experiments on cuprates, RH0 changes, in contrast to RH*, again to the
hole-like sign below the pseudogap temperature T*, revealing a strong
temperature variation for T->0.Comment: LaTeX, 4 pages, 4 figures, submitted to PR
Tracking of urban aerosols using combined LIDAR-based remote sensing and ground-based measurements
A measuring campaign was performed over the neighboring towns of Nova Gorica in Slovenia and Gorizia in Italy on 24 and 25 May 2010, to investigate the concentration and distribution of urban aerosols. Tracking of two-dimensional spatial and temporal aerosol distributions was performed using scanning elastic LIDAR, operating at 1064 nm. In addition, PM<sub>10</sub> concentrations of particles, NO<sub>x</sub> concentrations and meteorological data were continuously monitored within the LIDAR scanning region. Based on the data we collected, we investigated the flow dynamics and the aerosol concentrations within the lower troposphere and found an evidence for daily aerosol cycles. We observed a number of cases with spatially localized increased LIDAR returns, which are associated with the presence of point sources of particulate matter. Daily aerosol concentration cycles were also clearly visible with a peak in aerosol concentration during the morning rush hours and daily plateau at around 17:00 Central European Time. We also found that horizontal atmospheric extinction at the height of 200 m, averaged in limited region with a radius of 300 m directly above the ground-based measuring site, was linearly correlated to the PM<sub>10</sub> concentration with a correlation coefficient of 0.84. When considering the average of the horizontal atmospheric extinction over the entire scanning region, a strong dependence on traffic conditions (concentration of NO<sub>x</sub>) in the vicinity of the ground-based measuring site was observed
Search for hidden-photon dark matter with the FUNK experiment
Many extensions of the Standard Model of particle physics predict a parallel
sector of a new U(1) symmetry, giving rise to hidden photons. These hidden
photons are candidate particles for cold dark matter. They are expected to
kinetically mix with regular photons, which leads to a tiny oscillating
electric-field component accompanying dark matter particles. A conducting
surface can convert such dark matter particles into photons which are emitted
almost perpendicularly to the surface. The corresponding photon frequency
follows from the mass of the hidden photons. In this contribution we present a
preliminary result on a hidden photon search in the visible and near-UV
wavelength range that was done with a large, 14 m2 spherical metallic mirror
and discuss future dark matter searches in the eV and sub-eV range by
application of different detectors for electromagnetic radiation.Comment: Contribution to the 35th International Cosmic Ray Conference
ICRC2017, 10 to 20 July, 2017, Bexco, Busan, Korea. arXiv admin note: text
overlap with arXiv:1711.0296
Thermodynamic and diamagnetic properties of weakly doped antiferromagnets
Finite-temperature properties of weakly doped antiferromagnets as modeled by
the two-dimensional t-J model and relevant to underdoped cuprates are
investigated by numerical studies of small model systems at low doping. Two
numerical methods are used: the worldline quantum Monte Carlo method with a
loop cluster algorithm and the finite-temperature Lanczos method, yielding
consistent results. Thermodynamic quantities: specific heat, entropy and spin
susceptibility reveal a sizeable perturbation induced by holes introduced into
a magnetic insulator, as well as a pronounced temperature dependence. The
diamagnetic susceptibility introduced by coupling of the magnetic field to the
orbital current reveals an anomalous temperature dependence, changing character
from diamagnetic to paramagnetic at intermediate temperatures.Comment: LaTeX, 10 pages, 10 figures, submitted to Phys. Rev.
Low Temperature Lanczos Method
We present a modified finite temperature Lanczos method for the evaluation of
dynamical and static quantities of strongly correlated electron systems that
complements the finite temperature method (FTLM) introduced by Jaklic and
Prelovsek for low temperatures. Together they allow accurate calculations at
any temperature with moderate effort. As an example we calculate the static
spin correlation function and the regular part of the optical conductivity of
the one dimensional Hubbard model at half-filling and show in detail the
connection between the ground state and finite temperature method. By using
Cluster Perturbation Theory (CPT), the finite temperature spectral function is
extended to the infinite system, clearly exhibiting the effects of spin-charge
separation.Comment: 4 pages, 4 figure
New interpretation of variational principles for gauge theories. I. Cyclic coordinate alternative to ADM split
I show how there is an ambiguity in how one treats auxiliary variables in
gauge theories including general relativity cast as 3 + 1 geometrodynamics.
Auxiliary variables may be treated pre-variationally as multiplier coordinates
or as the velocities corresponding to cyclic coordinates. The latter treatment
works through the physical meaninglessness of auxiliary variables' values
applying also to the end points (or end spatial hypersurfaces) of the
variation, so that these are free rather than fixed. [This is also known as
variation with natural boundary conditions.] Further principles of dynamics
workings such as Routhian reduction and the Dirac procedure are shown to have
parallel counterparts for this new formalism. One advantage of the new scheme
is that the corresponding actions are more manifestly relational. While the
electric potential is usually regarded as a multiplier coordinate and Arnowitt,
Deser and Misner have regarded the lapse and shift likewise, this paper's
scheme considers new {\it flux}, {\it instant} and {\it grid} variables whose
corresponding velocities are, respectively, the abovementioned previously used
variables. This paper's way of thinking about gauge theory furthermore admits
interesting generalizations, which shall be provided in a second paper.Comment: 11 page
Measurements of , , , and proton production in proton-carbon interactions at 31 GeV/ with the NA61/SHINE spectrometer at the CERN SPS
Measurements of hadron production in p+C interactions at 31 GeV/c are
performed using the NA61/ SHINE spectrometer at the CERN SPS. The analysis is
based on the full set of data collected in 2009 using a graphite target with a
thickness of 4% of a nuclear interaction length. Inelastic and production cross
sections as well as spectra of , , p, and are
measured with high precision. These measurements are essential for improved
calculations of the initial neutrino fluxes in the T2K long-baseline neutrino
oscillation experiment in Japan. A comparison of the NA61/SHINE measurements
with predictions of several hadroproduction models is presented.Comment: v1 corresponds to the preprint CERN-PH-EP-2015-278; v2 matches the
final published versio
- …