74 research outputs found
1H-NMR-Based Metabolomic Profiling of CSF in Early Amyotrophic Lateral Sclerosis
Background: Pathophysiological mechanisms involved in amyotrophic lateral sclerosis (ALS) are complex and none has identified reliable markers useful in routine patient evaluation. The aim of this study was to analyze the CSF of patients with ALS by 1 H NMR (Nuclear Magnetic Resonance) spectroscopy in order to identify biomarkers in the early stages of the disease, and to evaluate the biochemical factors involved in ALS. Methodology: CSF samples were collected from patients with ALS at the time of diagnosis and from patients without neurodegenerative diseases. One and two-dimensional 1 H NMR analyses were performed and metabolites were quantified by the ERETIC method. We compared the concentrations of CSF metabolites between both groups. Finally, we performed principal component (PCA) and discriminant analyses. Principal Findings: Fifty CSF samples from ALS patients and 44 from controls were analyzed. We quantified 17 metabolites including amino-acids, organic acids, and ketone bodies. Quantitative analysis revealed significantly lower acetate concentrations (p = 0.0002) in ALS patients compared to controls. Concentration of acetone trended higher (p = 0.015), and those of pyruvate (p = 0.002) and ascorbate (p = 0.003) were higher in the ALS group. PCA demonstrated that the pattern of analyzed metabolites discriminated between groups. Discriminant analysis using an algorithm of 17 metabolites reveale
Distribution of Genes Encoding the Trypsin-Dependent Lantibiotic Ruminococcin A among Bacteria Isolated from Human Fecal Microbiota
Fourteen bacterial strains capable of producing a trypsin-dependent antimicrobial substance active against Clostridium perfringens were isolated from human fecal samples of various origins (from healthy adults and children, as well as from adults with chronic pouchitis). Identification of these strains showed that they belonged to Ruminococcus gnavus, Clostridium nexile, and Ruminococcus hansenii species or to new operational taxonomic units, all from the Clostridium coccoides phylogenetic group. In hybridization experiments with a probe specific for the structural gene encoding the trypsin-dependent lantibiotic ruminococcin A (RumA) produced by R. gnavus, seven strains gave a positive response. All of them harbored three highly conserved copies of rumA-like genes. The deduced peptide sequence was identical to or showed one amino acid difference from the hypothetical precursor of RumA. Our results indicate that the rumA-like genes have been disseminated among R. gnavus and phylogenetically related strains that can make up a significant part of the human fecal microbiota
Granulosa cells provide elimination of apoptotic oocytes through unconventional autophagy-assisted phagocytosis
International audienc
Update on the cellular and molecular aspects of cystic fibrosis transmembrane conductance regulator (CFTR) and male fertility
International audienceCFTR protein regulates electrolyte and fluid transport in almost all tissues with exocrine function, including male reproductive tract. Mutation of CFTR gene causes cystic fibrosis (CF), which affects the function of several organs, and impairs male fertility. The role of CFTR protein in different compartments of male reproductive tract (testis, epididymis, sperm) as well as an impact of CFTR mutation(s) on male fertility phenotype is discussed in relation with the choice of optimal technique for Assisted Reproductive Techniques (ART) management
- …