77 research outputs found

    Computer Diagnosis of Congenital Heart Disease

    Get PDF
    book chapterBiomedical Informatic

    Domesticated horses differ in their behavioural and physiological responses to isolated and group housing

    Get PDF
    The predominant housing system used for domestic horses is individual stabling however, housing that limits social interaction and requires the horse to live in semi-isolation has been reported to be a concern for equine welfare. The aim of the current study was to compare behavioural and physiological responses of domestic horses in different types of housing design that provided varying levels of social contact. Horses (n = 16) were divided equally into four groups and exposed to each of four housing treatments for a period of five days per treatment in a randomized block design. The four housing treatments used were single housed no physical contact (SHNC), single housed semi contact (SHSC), paired housed full contact (PHFC) and group housed full contact (GHFC). During each housing treatment, adrenal activity was recorded using non-invasive faecal corticosterone metabolite analysis (fGC). Thermal images of the eye were captured and eye temperature assessed as a non-invasive measure of the stress response. Behavioural analysis of time budget was carried out and an ease of handling score was assigned to each horse in each treatment using video footage. SHNC horses had significantly higher (p = 0.01) concentrations of fGC and were significantly (p = 0.003) more difficult to handle compared to the other housing types. GHFC horses, although not significantly different, had numerically lower concentrations of fGC and were more compliant to handling when compared to all other housing treatments. Eye temperature was significantly (p = 0.0001) lower in the group housed treatment when compared to all other treatments. These results indicate that based on physiological and behavioural measures incorporating social contact into the housing design of domestic horses could improve the standard of domestic equine welfare

    Theories of schizophrenia: a genetic-inflammatory-vascular synthesis

    Get PDF
    BACKGROUND: Schizophrenia, a relatively common psychiatric syndrome, affects virtually all brain functions yet has eluded explanation for more than 100 years. Whether by developmental and/or degenerative processes, abnormalities of neurons and their synaptic connections have been the recent focus of attention. However, our inability to fathom the pathophysiology of schizophrenia forces us to challenge our theoretical models and beliefs. A search for a more satisfying model to explain aspects of schizophrenia uncovers clues pointing to genetically mediated CNS microvascular inflammatory disease. DISCUSSION: A vascular component to a theory of schizophrenia posits that the physiologic abnormalities leading to illness involve disruption of the exquisitely precise regulation of the delivery of energy and oxygen required for normal brain function. The theory further proposes that abnormalities of CNS metabolism arise because genetically modulated inflammatory reactions damage the microvascular system of the brain in reaction to environmental agents, including infections, hypoxia, and physical trauma. Damage may accumulate with repeated exposure to triggering agents resulting in exacerbation and deterioration, or healing with their removal. There are clear examples of genetic polymorphisms in inflammatory regulators leading to exaggerated inflammatory responses. There is also ample evidence that inflammatory vascular disease of the brain can lead to psychosis, often waxing and waning, and exhibiting a fluctuating course, as seen in schizophrenia. Disturbances of CNS blood flow have repeatedly been observed in people with schizophrenia using old and new technologies. To account for the myriad of behavioral and other curious findings in schizophrenia such as minor physical anomalies, or reported decreased rates of rheumatoid arthritis and highly visible nail fold capillaries, we would have to evoke a process that is systemic such as the vascular and immune/inflammatory systems. SUMMARY: A vascular-inflammatory theory of schizophrenia brings together environmental and genetic factors in a way that can explain the diversity of symptoms and outcomes observed. If these ideas are confirmed, they would lead in new directions for treatments or preventions by avoiding inducers of inflammation or by way of inflammatory modulating agents, thus preventing exaggerated inflammation and consequent triggering of a psychotic episode in genetically predisposed persons

    Group A Streptococcus, Acute Rheumatic Fever and Rheumatic Heart Disease: Epidemiology and Clinical Considerations

    Get PDF

    Molecular Analysis of Group A Streptococcus Type emm18 Isolates Temporally Associated with Acute Rheumatic Fever Outbreaks in Salt Lake City, Utah

    No full text
    Acute rheumatic fever (ARF) and subsequent rheumatic heart disease are rare but serious sequelae of group A Streptococcus (GAS) infections in most western countries. Salt Lake City (SLC), Utah, and the surrounding intermountain region experienced a resurgence of ARF in 1985 which has persisted. The largest numbers of cases were encountered in 1985-1986 and in 1997-1998. Organisms with a mucoid colony phenotype when grown on blood agar plates were temporally associated with the higher incidence of ARF. To develop an understanding of the molecular population genetic structure of GAS strains associated with ARF in the SLC region, 964 mucoid and nonmucoid pharyngeal isolates recovered in SLC from 1984 to 1999 were studied by sequencing the emm gene. Isolates with an emm18 allele were further characterized by sequencing the spa, covR, and covS genes. Peak periods of ARF were associated with GAS isolates possessing an emm18 allele encoding the protein found in serotype M18 isolates. Among the serotype M18 isolates, the difference in the number of C repeats produced three size variants. Variation was limited in spa, a gene that encodes a streptococcal protective antigen, and covR and covS, genes that encode a two-component regulatory system that, when inactivated, results in a mucoid phenotype and enhanced virulence in mouse infection models. Pulsed-field gel electrophoresis showed a single restriction profile for serotype M18 organisms isolated during both peak periods of ARF. In SLC, the incidence of ARF coresurged with the occurrence of GAS serotype M18 isolates that have very restricted genetic variation
    corecore