95 research outputs found

    Loss and dispersion of superficial white matter in Alzheimer's disease: a diffusion MRI study

    Get PDF
    Pathological cerebral white matter changes in Alzheimer’s disease have been shown using diffusion tensor imaging. Superficial white matter changes are relatively understudied despite their importance in cortico-cortical connections. Measuring superficial white matter degeneration using diffusion tensor imaging is challenging due to its complex organizational structure and proximity to the cortex. To overcome this, we investigated diffusion MRI changes in young-onset Alzheimer’s disease using standard diffusion tensor imaging and Neurite Orientation Dispersion and Density Imaging to distinguish between disease-related changes that are degenerative (e.g. loss of myelinated fibres) and organizational (e.g. increased fibre dispersion). Twenty-nine young-onset Alzheimer’s disease patients and 22 healthy controls had both single-shell and multi-shell diffusion MRI. We calculated fractional anisotropy, mean diffusivity, neurite density index, orientation dispersion index and tissue fraction (1-free water fraction). Diffusion metrics were sampled in 15 a priori regions of interest at four points along the cortical profile: cortical grey matter, grey/white boundary, superficial white matter (1 mm below grey/white boundary) and superficial/deeper white matter (2 mm below grey/white boundary). To estimate cross-sectional group differences, we used average marginal effects from linear mixed effect models of participants’ diffusion metrics along the cortical profile. The superficial white matter of young-onset Alzheimer’s disease individuals had lower neurite density index compared to controls in five regions (superior and inferior parietal, precuneus, entorhinal and parahippocampus) (all P < 0.05), and higher orientation dispersion index in three regions (fusiform, entorhinal and parahippocampus) (all P < 0.05). Young-onset Alzheimer’s disease individuals had lower fractional anisotropy in the entorhinal and parahippocampus regions (both P < 0.05) and higher fractional anisotropy within the postcentral region (P < 0.05). Mean diffusivity was higher in the young-onset Alzheimer’s disease group in the parahippocampal region (P < 0.05) and lower in the postcentral, precentral and superior temporal regions (all P < 0.05). In the overlying grey matter, disease-related changes were largely consistent with superficial white matter findings when using neurite density index and fractional anisotropy, but appeared at odds with orientation dispersion and mean diffusivity. Tissue fraction was significantly lower across all grey matter regions in young-onset Alzheimer’s disease individuals (all P < 0.001) but group differences reduced in magnitude and coverage when moving towards the superficial white matter. These results show that microstructural changes occur within superficial white matter and along the cortical profile in individuals with young-onset Alzheimer’s disease. Lower neurite density and higher orientation dispersion suggests underlying fibres undergo neurodegeneration and organizational changes, two effects previously indiscernible using standard diffusion tensor metrics in superficial white matter

    Not all voxels are created equal: Reducing estimation bias in regional NODDI metrics using tissue-weighted means

    Get PDF
    Data and code availability: Code used in calculating the tissue-weighting mean is available here: https://github.com/tdveale/NODDI-tissue-weighting-tool. ROI data and other scripts used in this analysis are available on request and without restriction by contacting the corresponding author. Acquired or processed NIfTI images are not available due to patient confidentiality agreements.Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdfAppendix: Table A1 available at https://www.sciencedirect.com/science/article/pii/S1053811921010211?via%3Dihub#tbl0001 ; Appendix B. Supplementary materials available at https://ars.els-cdn.com/content/image/1-s2.0-S1053811921010211-mmc1.docx (Word document (3MB)).Copyright © 2021 The Authors. Neurite orientation dispersion and density imaging (NODDI) estimates microstructural properties of brain tissue relating to the organisation and processing capacity of neurites, which are essential elements for neuronal communication. Descriptive statistics of NODDI tissue metrics are commonly analyzed in regions-of-interest (ROI) to identify brain-phenotype associations. Here, the conventional method to calculate the ROI mean weights all voxels equally. However, this produces biased estimates in the presence of CSF partial volume. This study introduces the tissue-weighted mean, which calculates the mean NODDI metric across the tissue within an ROI, utilising the tissue fraction estimate from NODDI to reduce estimation bias. We demonstrate the proposed mean in a study of white matter abnormalities in young onset Alzheimer's disease (YOAD). Results show the conventional mean induces significant bias that correlates with CSF partial volume, primarily affecting periventricular regions and more so in YOAD subjects than in healthy controls. Due to the differential extent of bias between healthy controls and YOAD subjects, the conventional mean under- or over-estimated the effect size for group differences in many ROIs. This demonstrates the importance of using the correct estimation procedure when inferring group differences in studies where the extent of CSF partial volume differs between groups. These findings are robust across different acquisition and processing conditions. Bias persists in ROIs at higher image resolution, as demonstrated using data obtained from the third phase of the Alzheimer's disease neuroimaging initiative (ADNI); and when performing ROI analysis in template space. This suggests that conventional ROI means of NODDI metrics are biased estimates under most contemporary experimental conditions, the correction of which requires the proposed tissue-weighted mean. The tissue-weighted mean produces accurate estimates of ROI means and group differences when ROIs contain voxels with CSF partial volume. In addition to NODDI, the technique can be applied to other multi-compartment models that account for CSF partial volume, such as the free water elimination method. We expect the technique to help generate new insights into normal and abnormal variation in tissue microstructure of regions typically confounded by CSF partial volume, such as those in individuals with larger ventricles due to atrophy associated with neurodegenerative disease.CP and GZ were funded by the Wellcome Trust (Collaborative Award 200181/Z/15/Z). TV was funded by an Alzheimer's Research UK PhD scholarship (ARUK-PhD2018–009). MB was supported by a Fellowship award from the Alzheimer's Society, UK (AS-JF-19a-004–517). MB's work was also supported by the UK Dementia Research Institute which receives its funding from DRI Ltd, funded by the UK Medical Research Council, Alzheimer's Society and Alzheimer's Research UK. IM was supported by Alzheimer's Research UK (ARUK-PG2014–1946, ARUK-PG2017–1946) and the Wolfson Foundation (PR/ylr/18575). DLT was supported by the UCL Leonard Wolfson Experimental Neurology Centre (PR/ylr/18575), UCLH NIHR Biomedical Research Centre and the Wellcome Trust (Centre award 539208). JMS acknowledges the support of the National Institute for Health Research University College London Hospitals Biomedical Research Centre, Wolfson Foundation, Alzheimer's Research UK, Brain Research UK, Weston Brain Institute, Medical Research Council, British Heart Foundation, UK Dementia Research Institute and Alzheimer's Association. DMC was supported by the UK Dementia Research Institute which receives its funding from DRI Ltd, funded by the UK Medical Research Council, Alzheimer's Society and Alzheimer's Research UK, as well as Alzheimer's Research UK (ARUK‐PG2017‐1946) and the UCL/UCLH NIHR Biomedical Research Centre. We would also like to acknowledge Prof. Nick Fox who is a senior NIHR investigator for his role in conceiving the initial YOAD study preceding this work. The authors would like to thank all research participants who made this study possible, as well as Alzheimer's Research UK and Iceland Foods Charitable Foundation for funding the Young-Onset Alzheimer's disease study. The Dementia Research Centre is supported by Alzheimer's Research UK, Brain Research Trust, and The Wolfson Foundation. They also thank Kirsty Lu, Amelia Carton, Timothy Shakespeare, Keir Yong, Aida Suarez Gonzalez and Silvia Primativo for assistance with neuropsychology assessments

    Hand and Eye Dominance in Sport: Are Cricket Batters Taught to Bat Back-to-Front?

    Get PDF
    Background: When first learning to bimanually use a tool to hit a target (e.g., when chopping wood or hitting a golf ball), most people assume a stance that is dictated by their dominant hand. By convention, this means that a ‘right-handed’ or ‘left-handed’ stance that places the dominant hand closer to the striking end of the tool is adopted in many sports. Objective: The aim of this study was to investigate whether the conventional stance used for bimanual hitting provides the best chance of developing expertise in that task. Methods: Our study included 43 professional (international/first-class) and 93 inexperienced (<5 years’ experience) cricket batsmen. We determined their batting stance (plus hand and eye dominance) to compare the proportion of batters who adopted a reversed stance when batting (that is, the opposite stance to that expected based on their handedness). Results: We found that cricket batsmen who adopted a reversed stance had a stunning advantage, with professional batsmen 7.1 times more likely to adopt a reversed stance than inexperienced batsmen, independent of whether they batted right or left handed or the position of their dominant eye. Conclusion: Findings imply that batsmen who adopt a conventional stance may inadvertently be batting ‘back-to-front’ and have a significant disadvantage in the game. Moreover, the results may generalize more widely, bringing into question the way in which other bimanual sporting actions are taught and performed

    IL-17A Expression Is Localised to Both Mononuclear and Polymorphonuclear Synovial Cell Infiltrates

    Get PDF
    This study examines the expression of IL-17A-secreting cells within the inflamed synovium and the relationship to in vivo joint hypoxia measurements.IL-17A expression was quantified in synovial tissue (ST), serum and synovial fluid (SF) by immunohistochemistry and MSD-plex assays. IL-6 SF and serum levels were measured by MSD-plex assays. Dual immunofluorescence for IL-17A was quantified in ST CD15+ cells (neutrophils), Tryptase+ (mast cells) and CD4+ (T cells). Synovial tissue oxygen (tpO(2)) levels were measured under direct visualisation at arthroscopy. Synovial infiltration was assessed using immunohistochemistry for cell specific markers. Peripheral blood mononuclear and polymorphonuclear cells were isolated and exposed to normoxic or 3% hypoxic conditions. IL-17A and IL-6 were quantified as above in culture supernatants.IL-17A expression was localised to mononuclear and polymorphonuclear (PMN) cells in inflamed ST. Dual immunoflourescent staining co-localised IL-17A expression with CD15+ neutrophils Tryptase+ mast cells and CD4+T cells. % IL-17A positivity was highest on CD15+ neutrophils, followed by mast cells and then CD4+T-cells. The number of IL-17A-secreting PMN cells significantly correlated with sublining CD68 expression (r = 0.618, p<0.01). IL-17A SF levels correlated with IL-6 SF levels (r = 0.675, p<0.01). Patients categorized according to tp0(2)< or >20 mmHg, showed those with low tp0(2)<20 mmHg had significantly higher IL-17A+ mononuclear cells with no difference observed for PMNs. Exposure of mononuclear and polymorphonuclear cells to 3% hypoxia, significantly induced IL-6 in mononuclear cells, but had no effect on IL-17A expression in mononuclear and polymorphonuclear cells.This study demonstrates IL-17A expression is localised to several immune cell subtypes within the inflamed synovial tissue, further supporting the concept that IL-17A is a key mediator in inflammatory arthritis. The association of hypoxia with Il-17A expression appears to be indirect, probably through hypoxia-induced pro-inflammatory pathways and leukocyte influx within the joint microenvironment

    Relationship between body image disturbance and incidence of depression: the SUN prospective cohort

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Body image disturbance is an increasing problem in Western societies and is associated with a number of mental health outcomes including anorexia, bulimia, body dysmorphia, and depression. The aim of this study was to assess the association between body image disturbance and the incidence of depression.</p> <p>Methods</p> <p>This study included 10,286 participants from a dynamic prospective cohort of Spanish university graduates, who were followed-up for a median period of 4.2 years (Seguimiento Universidad de Navarra – the SUN study). The key characteristic of the study is the permanently open recruitment that started in 1999. The baseline questionnaire included information about body mass index (BMI) and the nine figure schemes that were used to assess body size perception. These variables were grouped according to recommended classifications and the difference between BMI and body size perception was considered as a proxy of body image disturbance. A subject was classified as an incident case of depression if he/she was initially free of depression and reported a physician-made diagnosis of depression and/or the use of antidepressant medication in at least one of the follow-up questionnaires. The association between body image disturbance and the incidence of depression was estimated by calculating the multivariable adjusted Odds Ratio (OR) and its 95% Confidence Interval (95% CI), using logistic regression models.</p> <p>Results</p> <p>The cumulative incidence of depression during follow-up in the cohort was 4.8%. Men who underestimated their body size had a high percentage of overweight and obesity (50.1% and 12.6%, respectively), whereas women who overestimated their body size had a high percentage of underweight (87.6%). The underestimation exhibited a negative association with the incidence of depression among women (OR: 0.72, 95% CI: 0.54 – 0.95), but this effect disappeared after adjusting for possible confounding variables. The proportion of participants who correctly perceived their body size was high (53.3%) and gross misperception was seldom found, with most cases selecting only one silhouette below (42.7%) or above (2.6%) their actual BMI.</p> <p>Conclusion</p> <p>We found no association between body image disturbance and subsequent depression in a cohort of university graduates in Spain.</p

    Bone mineral density and body composition in postmenopausal women with psoriasis and psoriatic arthritis

    Get PDF
    Introduction: the aim of the present study was to compare bone mineral density (BMD) and body composition (BC) measurements as well as identify risk factors for low BMD and osteoporotic fractures in postmenopausal women with psoriasis (Ps) and psoriatic arthritis (PsA).Methods: A cross-sectional study was carried out in 45 PsA women, 52 Ps women and 98 healthy female controls (HC). Clinical risk factors for low bone density and osteoporotic fracture were evaluated by a specific questionnaire. An X-ray absorptiometry (DXA) at the lumbar spine, total femur and total body was performed on all patients. Skin and joint outcomes were measured by specific tools (PASI, HAQ and DAS28). Morphometric vertebral fractures were evaluated by lumbar and thoracic spine X-ray, according to Genant's method.Results: There were no significant differences in age, body mass index (BMI), total lean mass and bone mineral density among the groups. However, the PsA group had a significantly higher body fat percentage (BF%) than the Ps and HC groups. Osteoporotic fractures were more frequently observed in PsA and Ps groups than in the HC group (P = 0.01). Recurrent falls and a longer duration of disease increased the risk of fracture (odds ratio (OR) = 18.3 and 1.08, respectively) in the PsA group (P = 0.02). Disability was the main factor related to osteoporotic fracture in the Ps group (odds ratio (OR) = 11.1) (P = 0.02).Conclusions: Ps and PsA patients did not present lower BMD. However, they had a higher prevalence of osteoporotic fractures and higher risk of metabolic syndrome. Patients with a longer duration of disease, disability and recurrent falls need preventive measures.Rheumatology Division at UNIFESP/EPMUniversidade Federal de São Paulo, UNIFESP Paulista Sch Med, Div Rheumatol, EPM, BR-04023900 São Paulo, BrazilUniversidade Federal de São Paulo, UNIFESP Paulista Sch Med, Div Rheumatol, EPM, BR-04023900 São Paulo, BrazilWeb of Scienc

    The neurobiological link between OCD and ADHD

    Get PDF
    corecore