102 research outputs found

    Biodiversité des mouches des fruits (Diptera : Tephritidae) en vergers de manguiers de l'ouest du Burkina Faso : structure et comparaison des communautés de différents sites

    Full text link
    Introduction. Un inventaire des espèces de Tephritidae dans des vergers de l'ouest du Burkina Faso a été effectué entre décembre 2007 et décembre 2009. Matériel et méthodes. Un piégeage de détection a été mené dans sept vergers de manguiers en utilisant comme appât de la levure de Torula placée dans des pièges Mac Phail. Résultats et discussion. L'identification et le dénombrement des Tephritidae capturées a permis de recenser 18 espèces : neuf du genre Ceratitis, sept du genre Dacus et deux du genre Bactrocera. Ceratitis cosyra et Bactrocera invadens (respectivement 53,02 % et 36,19 % de l'ensemble des captures) se sont révélées être les espèces dominantes. Nous avons mis en évidence une forte similarité des communautés de Tephritidae au niveau des différents sites étudiés (coefficients de similitude entre 42,86 % et 100 %); cette similarité pourrait être expliquée d'une part par l'homogénéité des conditions climatiques, d'autre part par celle de la végétation de la zone d'étude. La proximité des parcelles de cultures maraîchères et la diversité des fruitiers locaux hôtes des Tephritidae autour des vergers de manguiers pourraient être à l'origine de la richesse spécifique élevée que nous avons constatée. Conclusion. Notre étude a révélé une diversité de Tephritidae dans la zone d'investigation qui présente des communautés d'espèces homogènes. Ces résultats seront complétés par l'identification des espèces associées aux dégâts sur manguier et à l'évaluation de leur importance. Ils suggèrent dès à présent la possibilité de développer, contre ces ravageurs, une stratégie de lutte commune à toutes les localités de la zone d'étude de l'ouest du Burkina Faso. (Résumé d'auteur

    Pupae transplantation to boost early colony growth in the weaver ant Oecophylla longinoda Latreille (Hymenoptera: Formicidae)

    Get PDF
    Oecophylla ants are currently used for biological control in fruit plantations in Australia, Asia and Africa and for protein production in Asia. To further improve the technology and implement it on a large scale, effective and fast production of live colonies is de¬sirable. Early colony development may be artificially boosted via the use of multiple queens (pleometrosis) and/or by adoption of foreign pupae in developing colonies. In the present experiments, we tested if multiple queens and transplantation of pupae could boost growth in young Oecophylla longinoda colonies. We found out that colonies with two queens artificially placed in the same nest, all perished due to queen fighting, suggesting that pleometrosis is not used by O. longinoda in Benin. In contrast, pupae transplantation resulted in highly increased growth rates, as pupae were readily adopted by the queens and showed high survival rates (mean = 92%). Within the 50-day experi¬ment the total number of individuals in colonies with 50 and 100 pupae transplanted, increased with 169 and 387%, respectively, compared to colonies receiving no pupae. This increase was both due to the individuals added in the form of pupae but also due to an increased per capita brood production by the resident queen, triggered by the adopted pupae. Thus pupae transplantation may be used to shorten the time it takes to produce weaver ant colonies in ant nurseries, and may in this way facilitate the imple-mentation of weaver ant biocontrol in West Africa

    Founding weaver ant queens (Oecophylla longinoda) increase production and nanitic worker size when adopting nonnestmate pupae

    Get PDF
    Weaver ants (Oecophylla longinoda Latreille) are used commercially to control pest insects and for protein production. In this respect fast colony growth is desirable for managed colonies. Transplantation of non-nestmate pupae to incipient colonies has been shown to boost colony growth. Our objectives were to find the maximum number of pupae a founding queen can handle, and to measure the associated colony growth. Secondly, we tested if transplantation of pupae led to production of larger nanitic workers (defined as unusually small worker ants produced by founding queens in their first batch of offspring). Forty-five fertilized queens were divided into three treatments: 0 (control), 100 or 300 non-nestmate pupae transplanted to each colony. Pupae transplantation resulted in highly increased growth rates, as pupae were readily adopted by the queens and showed high proportions of surviving (mean = 76%). However, survival was significantly higher when 100 pupae were transplanted compared to transplantation of 300 pupae, indicating that queens were unable to handle 300 pupae adequately and that pupae require some amount of nursing. Nevertheless, within the 60-day experiment the transplantation of 300 pupae increased total colony size more than 10- fold whereas 100 pupae increased the size 5.6 fold, compared to control. This increase was due not only to the individuals added in the form of pupae but also to an increased per capita brood production by the resident queen, triggered by the adopted pupae. The size of hatching pupae produced by the resident queen also increased with the number of pupae transplanted, leading to larger nanitic workers in colonies adopting pupae. In conclusion, pupae transplantation may be used to produce larger colonies with larger worker ants and may thus reduce the time to produce weaver ant colonies for commercial purposes. This in turn may facilitate the implementation of the use of weaver ants.Weaver ants (Oecophylla longinoda Latreille) are used commercially to control pest insects and for protein production. In this respect fast colony growth is desirable for managed colonies. Transplantation of non-nestmate pupae to incipient colonies has been shown to boost colony growth. Our objectives were to find the maximum number of pupae a founding queen can handle, and to measure the associated colony growth. Secondly, we tested if transplantation of pupae led to production of larger nanitic workers (defined as unusually small worker ants produced by founding queens in their first batch of offspring). Forty-five fertilized queens were divided into three treatments: 0 (control), 100 or 300 non-nestmate pupae transplanted to each colony. Pupae transplantation resulted in highly increased growth rates, as pupae were readily adopted by the queens and showed high proportions of surviving (mean = 76%). However, survival was significantly higher when 100 pupae were transplanted compared to transplantation of 300 pupae, indicating that queens were unable to handle 300 pupae adequately and that pupae require some amount of nursing. Nevertheless, within the 60-day experiment the transplantation of 300 pupae increased total colony size more than 10- fold whereas 100 pupae increased the size 5.6 fold, compared to control. This increase was due not only to the individuals added in the form of pupae but also to an increased per capita brood production by the resident queen, triggered by the adopted pupae. The size of hatching pupae produced by the resident queen also increased with the number of pupae transplanted, leading to larger nanitic workers in colonies adopting pupae. In conclusion, pupae transplantation may be used to produce larger colonies with larger worker ants and may thus reduce the time to produce weaver ant colonies for commercial purposes. This in turn may facilitate the implementation of the use of weaver ants.Weaver ants (Oecophylla longinoda Latreille) are used commercially to control pest insects and for protein production. In this respect fast colony growth is desirable for managed colonies. Transplantation of non-nestmate pupae to incipient colonies has been shown to boost colony growth. Our objectives were to find the maximum number of pupae a founding queen can handle, and to measure the associated colony growth. Secondly, we tested if transplantation of pupae led to production of larger nanitic workers (defined as unusually small worker ants produced by founding queens in their first batch of offspring). Forty-five fertilized queens were divided into three treatments: 0 (control), 100 or 300 non-nestmate pupae transplanted to each colony. Pupae transplantation resulted in highly increased growth rates, as pupae were readily adopted by the queens and showed high proportions of surviving (mean = 76%). However, survival was significantly higher when 100 pupae were transplanted compared to transplantation of 300 pupae, indicating that queens were unable to handle 300 pupae adequately and that pupae require some amount of nursing. Nevertheless, within the 60-day experiment the transplantation of 300 pupae increased total colony size more than 10- fold whereas 100 pupae increased the size 5.6 fold, compared to control. This increase was due not only to the individuals added in the form of pupae but also to an increased per capita brood production by the resident queen, triggered by the adopted pupae. The size of hatching pupae produced by the resident queen also increased with the number of pupae transplanted, leading to larger nanitic workers in colonies adopting pupae. In conclusion, pupae transplantation may be used to produce larger colonies with larger worker ants and may thus reduce the time to produce weaver ant colonies for commercial purposes. This in turn may facilitate the implementation of the use of weaver ants.Weaver ants (Oecophylla longinoda Latreille) are used commercially to control pest insects and for protein production. In this respect fast colony growth is desirable for managed colonies. Transplantation of non-nestmate pupae to incipient colonies has been shown to boost colony growth. Our objectives were to find the maximum number of pupae a founding queen can handle, and to measure the associated colony growth. Secondly, we tested if transplantation of pupae led to production of larger nanitic workers (defined as unusually small worker ants produced by founding queens in their first batch of offspring). Forty-five fertilized queens were divided into three treatments: 0 (control), 100 or 300 non-nestmate pupae transplanted to each colony. Pupae transplantation resulted in highly increased growth rates, as pupae were readily adopted by the queens and showed high proportions of surviving (mean = 76%). However, survival was significantly higher when 100 pupae were transplanted compared to transplantation of 300 pupae, indicating that queens were unable to handle 300 pupae adequately and that pupae require some amount of nursing. Nevertheless, within the 60-day experiment the transplantation of 300 pupae increased total colony size more than 10- fold whereas 100 pupae increased the size 5.6 fold, compared to control. This increase was due not only to the individuals added in the form of pupae but also to an increased per capita brood production by the resident queen, triggered by the adopted pupae. The size of hatching pupae produced by the resident queen also increased with the number of pupae transplanted, leading to larger nanitic workers in colonies adopting pupae. In conclusion, pupae transplantation may be used to produce larger colonies with larger worker ants and may thus reduce the time to produce weaver ant colonies for commercial purposes. This in turn may facilitate the implementation of the use of weaver ants

    Impact of African weaver ant nests [Oecophylla longinoda Latreille (Hymenoptera: Formicidae)] on mango [Mangifera indica L. (Sapindales: Anacardiaceae)] leaves

    Get PDF
    Oecophylla ants are appreciated for their control of pests in plantation crops. However, the ants ? nest building may have negative impacts on trees. In this study we tested the effect of ant densities and nest building on the leaf performance of mango trees. Trees were divided into three groups: trees without ants, trees with low and trees with high ant densities. Subsequently, the total number of leaves, the proportion of leaves used for nest construction, and tree growth was compared between these groups. The percentage of leaves used for nests was between 0.42-1.2 % (mean = 0.7%±0.02) and the total number of leaves and tree growth was not significantly different between trees with and without ants. Further, leaf performance was compared between shoots with and without ant nests and between leaves in or outside ant nests. The number of leaves and lost leaves per shoot, leaf size , leaf condition (withered), leaf longevity and hemipteran infection was compared between groups. In the dry season nest-shoots held more leaves than shoots without nests despite nest-shoots showed more lost leaves. Leaves in nests were smaller than other leaves, more likely to wither and more often infested with scales. However, smaller nest-leaf size was probably due to the ants ? preference for young leaves and the higher incidence of withering resulting as leaves in nests cannot fall to the ground. In conclusion, the costs associated to ant nests were low and did not affect the overall number of leaves per tree nor tree growth.Oecophylla ants are appreciated for their control of pests in plantation crops. However, the ants ? nest building may have negative impacts on trees. In this study we tested the effect of ant densities and nest building on the leaf performance of mango trees. Trees were divided into three groups: trees without ants, trees with low and trees with high ant densities. Subsequently, the total number of leaves, the proportion of leaves used for nest construction, and tree growth was compared between these groups. The percentage of leaves used for nests was between 0.42-1.2 % (mean = 0.7%±0.02) and the total number of leaves and tree growth was not significantly different between trees with and without ants. Further, leaf performance was compared between shoots with and without ant nests and between leaves in or outside ant nests. The number of leaves and lost leaves per shoot, leaf size , leaf condition (withered), leaf longevity and hemipteran infection was compared between groups. In the dry season nest-shoots held more leaves than shoots without nests despite nest-shoots showed more lost leaves. Leaves in nests were smaller than other leaves, more likely to wither and more often infested with scales. However, smaller nest-leaf size was probably due to the ants ? preference for young leaves and the higher incidence of withering resulting as leaves in nests cannot fall to the ground. In conclusion, the costs associated to ant nests were low and did not affect the overall number of leaves per tree nor tree growth

    Innovative Approaches to Analysing Carbon Sequestration as a Mitigation Strategy in Tropical Pasture Landscapes in Two Emblematic Contexts, the Amazon and the West African Sahel

    Get PDF
    The relationship between ruminant production systems and climate change is complex. As a major contributor to greenhouse gas (GHG) emissions, the sector has been the subject of considerable controversy, with particularly severe criticism in the 2000s. However, ten years ago, the attitude towards grazing lands began to change. Their efficient use of non-renewable energy and their contribution to carbon (C) sequestration were considered as key factors in the new environmental challenge. The reality of this mitigation potential was recently called into question once again in the global agriculture and climate change debate, including that of sequestration in the soil where grazing lands occupy a major position (30-40% of the land surface representing 30% of the soil organic C of the world). Few scientific references are available on these questions in tropical regions, and the standard metrics and methods used may turn out to be unsuitable for the correct evaluation of grazed ecosystems in these regions. Significant work is therefore required to establish baselines and design strategies to ensure sustainable grazing in these regions where the global sequestration potential is high relative to the surface areas concerned. To contribute to this debate, we focus on mitigation options offered by rangelands and grasslands and their management in two emblematic tropical contexts, humid and dry tropics, where field studies have been based on original and holistic approaches at different levels. In Amazonia, if curbing deforestation remains a priority, it needs to be accompanied by sustainable management of deforested areas. In the French Amazon (French Guiana), monitoring fields using chronosequences and flux towers has produced scientific knowledge on the significant mitigation capacities of grassland ecosystems. In the Brazilian Amazon, the spatial logic of the agro-ecological intensification of forage production has enabled a transition from individual extractive systems to farm management at communal levels. In the West African Sahelian region (Northern Senegal), an integrative study at landscape scale revealed the unexpected capacity of soil and shrubs for C sequestration that can offset the GHG emissions for which pastoralism in dry tropical zones is usually blamed

    PIF4 enhances DNA binding by CDF2 to co-regulate target gene expression and promote Arabidopsis hypocotyl cell elongation

    Get PDF
    How specificity is conferred within gene regulatory networks is an important problem in biology. The basic helix–loop–helix PHYTOCHROME-INTERACTING FACTORs (PIFs) and single zinc-finger CYCLING DOF FACTORs (CDFs) mediate growth responses of Arabidopsis to light and temperature. We show that these two classes of transcription factor (TF) act cooperatively. CDF2 and PIF4 are temporally and spatially co-expressed, they interact to form a protein complex and act in the same genetic pathway to promote hypocotyl cell elongation. Furthermore, PIF4 substantially strengthens genome-wide occupancy of CDF2 at a subset of its target genes. One of these, YUCCA8, encodes an auxin biosynthesis enzyme whose transcription is increased by PIF4 and CDF2 to contribute to hypocotyl elongation. The binding sites of PIF4 and CDF2 in YUCCA8 are closely spaced, and in vitro PIF4 enhances binding of CDF2. We propose that this occurs by direct protein interaction and because PIF4 binding alters DNA conformation. Thus, we define mechanisms by which PIF and CDF TFs cooperate to achieve regulatory specificity and promote cell elongation in response to light
    corecore