6 research outputs found

    Phenotypically Plastic Responses to Predation Risk Are Temperature Dependent

    Get PDF
    Predicting how organisms respond to climate change requires that we understand the temperature dependence of fitness in relevant ecological contexts (e.g., with or without predation risk). Predation risk often induces changes to life history traits that are themselves temperature dependent. We explore how perceived predation risk and temperature interact to determine fitness (indicated by the intrinsic rate of increase, r) through changes to its underlying components (net reproductive rate, generation time, and survival) in Daphnia magna. We exposed Daphnia to predation cues from dragonfly naiads early, late, or throughout their ontogeny. Predation risk increased r differentially across temperatures and depending on the timing of exposure to predation cues. The timing of predation risk likewise altered the temperature-dependent response of T and R0. Daphnia at hotter temperatures responded to predation risk by increasing r through a combination of increased R0 and decreased T that together countered an increase in mortality rate. However, only D. magna that experienced predation cues early in ontogeny showed elevated r at colder temperatures. These results highlight the fact that phenotypically plastic responses of life history traits to predation risk can be strongly temperature dependent

    Targeted Manipulation of Abundant and Rare Taxa in the Daphnia magna Microbiota with Antibiotics Impacts Host Fitness Differentially

    Get PDF
    Host-associated microbes contribute to host fitness, but it is unclear whether these contributions are from rare keystone taxa, numerically abundant taxa, or interactions among community members. Experimental perturbation of the microbiota can highlight functionally important taxa; however, this approach is primarily applied in systems with complex communities where the perturbation affects hundreds of taxa, making it difficult to pinpoint contributions of key community members. Here, we use the ecological model organism Daphnia magna to examine the importance of rare and abundant taxa by perturbing its relatively simple microbiota with targeted antibiotics. We used sublethal antibiotic doses to target either rare or abundant members across two temperatures and then measured key host life history metrics and shifts in microbial community composition. We find that removal of abundant taxa had greater impacts on host fitness than did removal of rare taxa and that the abundances of nontarget taxa were impacted by antibiotic treatment, suggesting that no rare keystone taxa exist in the Daphnia magna microbiota but that microbe-microbe interactions may play a role in host fitness. We also find that microbial community composition was impacted by antibiotics differently across temperatures, indicating that ecological context shapes within-host microbial responses and effects on host fitness

    How fast is fast? Eco-evolutionary dynamics and rates of change in populations and phenotypes

    Get PDF
    It is increasingly recognized that evolution may occur in ecological time. It is not clear, however, how fast evolution – or phenotypic change more generally – may be in comparison with the associated ecology, or whether systems with fast ecological dynamics generally have relatively fast rates of phenotypic change. We developed a new dataset on standardized rates of change in population size and phenotypic traits for a wide range of species and taxonomic groups. We show that rates of change in phenotypes are generally no more than 2/3, and on average about 1/4, the concurrent rates of change in population size. There was no relationship between rates of population change and rates of phenotypic change across systems. We also found that the variance of both phenotypic and ecological rates increased with the mean across studies following a power law with an exponent of two, while temporal variation in phenotypic rates was lower than in ecological rates. Our results are consistent with the view that ecology and evolution may occur at similar time scales, but clarify that only rarely do populations change as fast in traits as they do in abundance

    How fast is fast? Eco-evolutionary dynamics and rates of change in populations and phenotypes

    Get PDF
    It is increasingly recognized that evolution may occur in ecological time. It is not clear, however, how fast evolution – or phenotypic change more generally – may be in comparison with the associated ecology, or whether systems with fast ecological dynamics generally have relatively fast rates of phenotypic change. We developed a new dataset on standardized rates of change in population size and phenotypic traits for a wide range of species and taxonomic groups. We show that rates of change in phenotypes are generally no more than 2/3, and on average about 1/4, the concurrent rates of change in population size. There was no relationship between rates of population change and rates of phenotypic change across systems. We also found that the variance of both phenotypic and ecological rates increased with the mean across studies following a power law with an exponent of two, while temporal variation in phenotypic rates was lower than in ecological rates. Our results are consistent with the view that ecology and evolution may occur at similar time scales, but clarify that only rarely do populations change as fast in traits as they do in abundance

    Phenotypically Plastic Responses to Predation Risk Are Temperature Dependent

    Get PDF
    Predicting how organisms respond to climate change requires that we understand the temperature dependence of fitness in relevant ecological contexts (e.g., with or without predation risk). Predation risk often induces changes to life history traits that are themselves temperature dependent. We explore how perceived predation risk and temperature interact to determine fitness (indicated by the intrinsic rate of increase, r) through changes to its underlying components (net reproductive rate, generation time, and survival) in Daphnia magna. We exposed Daphnia to predation cues from dragonfly naiads early, late, or throughout their ontogeny. Predation risk increased r differentially across temperatures and depending on the timing of exposure to predation cues. The timing of predation risk likewise altered the temperature-dependent response of T and R0. Daphnia at hotter temperatures responded to predation risk by increasing r through a combination of increased R0 and decreased T that together countered an increase in mortality rate. However, only D. magna that experienced predation cues early in ontogeny showed elevated r at colder temperatures. These results highlight the fact that phenotypically plastic responses of life history traits to predation risk can be strongly temperature dependent

    Data from: Predators modify the thermal dependence of life-history trade-offs.

    No full text
    Although life histories are shaped by temperature and predation, their joint influence on the interdependence of life-history traits is poorly understood. Shifts in one life history trait often necessitates shifts in another – structured in some cases by trade-offs – leading to differing life history strategies among environments. The offspring size-number trade-off connects three traits whereby a constant reproductive allocation (R) constrains how the number (O) and size (S) of offspring change. Increasing temperature and size-independent predation decrease size at and time to reproduction which can lower R through reduced time for resource accrual or size-constrained fecundity. We investigated how O, S, and R in a clonal population of Daphnia magna change across their first three clutches with temperature and size-independent predation risk. Early in ontogeny, increased temperature moved O and S along a trade-off curve (constant R) towards fewer larger offspring. Later in ontogeny, increased temperature reduced R in the no-predator treatment through disproportionate decreases in O relative to S. In the predation treatment, R likewise decreased at warmer temperatures but to a lesser degree and more readily traded off S for O whereby the third clutch showed a constant allocation strategy of O vs S with decreasing R. Ontogenetic shifts in S and O rotated in a counterclockwise fashion as temperature increased and more drastically under risk of predation. These results show that predation risk can alter the temperature dependence of traits, and their interactions through trade-offs
    corecore