53 research outputs found

    Characterisation Of The Photosynthetic Responses Of Spring And Winter Wheat To Growth At Cold-hardening Temperatures

    Get PDF
    In vivo room temperature chlorophyll a fluorescence coupled with CO{dollar}\sb2{dollar} and O{dollar}\sb2{dollar} exchange are measured to determine the effect of cold-hardening on the photosynthetic capacity and the susceptibility to photoinhibition of six cultivars of wheat (Triticum aestivum L.), covering a range of freezing tolerance. The role of the photosystem II (PSII) repair cycle in resistance to, and recovery from, photoinhibition is assessed at both low temperatures (5{dollar}\sp\circ{dollar}C & {dollar}-3\sp\circ{dollar}C) and in the presence of the 70S protein synthesis inhibitor, chloramphenicol. The effect of long-term, repeated photoinhibitory events and sustained reduction in PSII efficiency on net carbon gained is also assessed.;Winter wheat cultivars grown at 5{dollar}\sp\circ{dollar}C show light-saturated rates of CO{dollar}\sb2{dollar} exchange and apparent photon yields for CO{dollar}\sb2{dollar} exchange and O{dollar}\sb2{dollar} evolution that are equal to or greater than those of winter cultivars grown at 20{dollar}\sp\circ{dollar}C. In contrast, spring wheat cultivars grown at 5{dollar}\sp\circ{dollar}C show 35% lower apparent photon yields for CO{dollar}\sb2{dollar} exchange and 25% lower light-saturated rates of CO{dollar}\sb2{dollar} exchange compared to 20{dollar}\sp\circ{dollar}C grown controls. The lower CO{dollar}\sb2{dollar} exchange capacity is not associated with a lower efficiency of PSII activity measured as either the apparent photon yield for O{dollar}\sb2{dollar} evolution or the variable to maximal fluorescence ratio, and is most likely associated with carbon metabolism. In addition, cold-hardened spring wheat cultivars are more sensitive to short-term photoinhibition at low temperatures than cold-hardened winter cultivars. This greater resistance of the winter cultivars is associated with the winter phenotype rather than freezing tolerance per se and is due to an increase in the capacity of cold-hardened winter wheat to keep the primary electron acceptor for PSII, Q{dollar}\sb{lcub}\rm A{rcub},{dollar} oxidised at high irradiance (Oquist et al, 1991a).;Repeated photoinhibition (daily reductions in {dollar}F\sb{lcub}\rm V{rcub}/F\sb{lcub}\rm M{rcub}{dollar} of up to 40%) and sustained depression of PSII efficiency are shown to have no negative effects of net carbon accumulation in both cold-hardened winter and spring wheat. This is related to the finding that up to 50% of the loss in photon yield during photoinhibition is not due to irreversible damage to PSII. It is due instead to a rapidly reversible form on photoinhibition that recovers at temperatures as low as {dollar}-3\sp\circ{dollar}C and without de novo protein synthesis. It is suggested that this rapidly reversible form of photoinhibition is evidence of PSII quenching centres resulting from light induced, reversible modifications to the PSII reaction centre. It is proposed that these rapidly reversible quenching centres act as a regulatory mechanism, adjusting the yield of electron transport to match utilisation by photosynthetic carbon reduction. Thus, in situations where photosynthesis may be limited by factors other than light availability. PSII efficiency can be regulated by these wheat cultivars such that the photosynthetic apparatus is protected from over excitation

    Differences in growth-economics of fast vs. slow growing grass species in response to temperature and nitrogen limitation individually, and in combination

    Get PDF
    Background Fast growing invasive alien species are highly efficient with little investment in their tissues. They often outcompete slower growing species with severe consequences for diversity and community composition. The plant economics trait-based approach provides a theoretical framework, allowing the classification of plants with different performance characteristics. However, in multifaceted background, this approach needs testing. The evaluation and prediction of plant performance outcomes in ecologically relevant settings is among the most pressing topics to understand and predict ecosystem functioning, especially in a quickly changing environment. Temperature and nutrient availability are major components of the global environmental change and this study examines the response of growth economic traits, photosynthesis and respiration to such changes for an invasive fast-growing (Bromus hordaceus) and a slow-growing perennial (Bromus erectus) grass species. Results The fully controlled growth chamber experiment simulated temperature-and changes in nitrogen availability individually and in combination. We therefore provide maximum control and monitoring of growth responses allowing general growth trait response patterns to be tested. Under optimal nitrogen availability the slow growing B. erectus was better able to handle the lower temperatures (7 degrees C) whilst both species had problems at higher temperatures (30 degrees C). Stresses produced by a combination of heat and nutrient availability were identified to be less limiting for the slow growing species but the combination of chilling with low nutrient availability was most detrimental to both species. Conclusions For the fast-growing invader B. hordeaceus a reduction of nitrogen availability in combination with a temperature increase, leads to limited growth performance in comparison to the slow-growing perennial species B.erectus and this may explain why nutrient-rich habitats often experience more invasion than resource-poor habitats

    Soil Microbiome Influences on Seedling Establishment and Growth of Prosopis chilensis and Prosopis tamarugo from Northern Chile

    Get PDF
    Prosopis chilensis and Prosopis tamarugo, two woody legumes adapted to the arid regions of Chile, have a declining distribution due to the lack of new seedling establishment. This study investigated the potential of both species to establish in soil collected from four locations in Chile, within and outside the species distribution, and to assess the role of the root-colonizing microbiome in seedling establishment and growth. Seedling survival, height, and water potential were measured to assess establishment success and growth. 16S and ITS2 amplicon sequencing was used to characterize the composition of microbial communities from the different soils and to assess the ability of both Prosopis species to recruit bacteria and fungi from the different soils. Both species were established on three of the four soils. P. tamarugo seedlings showed significantly higher survival in foreign soils and maintained significantly higher water potential in Mediterranean soils. Amplicon sequencing showed that the four soils harbored distinct microbial communities. Root-associated microbial composition indicated that P. chilensis preferentially recruited mycorrhizal fungal partners while P. tamarugo recruited abundant bacteria with known salt-protective functions. Our results suggest that a combination of edaphic properties and microbial soil legacy are potential factors mediating the Prosopis establishment success in different soils

    Norway spruce deploys tissue-specific responses during acclimation to cold

    Get PDF
    Climate change in the conifer-dominated boreal forest is expected to lead to warmer but more dynamic winter air temperatures, reducing the depth and duration of snow cover and lowering winter soil temperatures. To gain insight into the mechanisms that have enabled conifers to dominate extreme cold environments, we performed genome-wide RNA-Seq analysis from needles and roots of non-dormant two-year Norway spruce (Picea abies (L.) H. Karst), and contrasted these response to herbaceous model Arabidopsis We show that the main transcriptional response of Norway spruce needles exposed to cold was delayed relative to Arabidopsis, and this delay was associated with slower development of freezing tolerance. Despite this difference in timing, Norway spruce principally utilizes early response transcription factors (TFs) belonging to the same gene families as Arabidopsis, indicating broad evolutionary conservation of cold response networks. In keeping with their different metabolic and developmental states, needles and root of Norway spruce showed contrasting results. Regulatory network analysis identified both conserved TFs with known roles in cold acclimation (e.g. homologs of ICE1, AKS3, and of the NAC and AP2/ERF superfamilies), but also a root-specific bHLH101 homolog, providing functional insights into cold stress response strategies in Norway spruce

    Comparative Fungal Community Analyses Using Metatranscriptomics and Internal Transcribed Spacer Amplicon Sequencing from Norway Spruce

    Get PDF
    The health, growth, and fitness of boreal forest trees are impacted and improved by their associated microbiomes. Microbial gene expression and functional activity can be assayed with RNA sequencing (RNA-Seq) data from host samples. In contrast, phylogenetic marker gene amplicon sequencing data are used to assess taxonomic composition and community structure of the microbiome. Few studies have considered how much of this structural and taxonomic information is included in transcriptomic data from matched samples. Here, we described fungal communities using both host-derived RNA-Seq and fungal ITS1 DNA amplicon sequencing to compare the outcomes between the methods. We used a panel of root and needle samples from the coniferous tree species Picea abies (Norway spruce) growing in untreated (nutrient-deficient) and nutrient-enriched plots at the Flakaliden forest research site in boreal northern Sweden. We show that the relationship between samples and alpha and beta diversity indicated by the fungal transcriptome is in agreement with that generated by the ITS data, while also identifying a lack of taxonomic overlap due to limitations imposed by current database coverage. Furthermore, we demonstrate how metatranscriptomics data additionally provide biologically informative functional insights. At the community level, there were changes in starch and sucrose metabolism, biosynthesis of amino acids, and pentose and glucuronate interconversions, while processing of organic macromolecules, including aromatic and heterocyclic compounds, was enriched in transcripts assigned to the genus Cortinarius.IMPORTANCE A deeper understanding of microbial communities associated with plants is revealing their importance for plant health and productivity. RNA extracted from plant field samples represents the host and other organisms present. Typically, gene expression studies focus on the plant component or, in a limited number of studies, expression in one or more associated organisms. However, metatranscriptomic data are rarely used for taxonomic profiling, which is currently performed using amplicon approaches. We created an assembly-based, reproducible, and hardware-agnostic workflow to taxonomically and functionally annotate fungal RNA-Seq data obtained from Norway spruce roots, which we compared to matching ITS amplicon sequencing data. While we identified some limitations and caveats, we show that functional, taxonomic, and compositional insights can all be obtained from RNA-Seq data. These findings highlight the potential of metatranscriptomics to advance our understanding of interaction, response, and effect between host plants and their associated microbial communities

    Metatranscriptomics captures dynamic shifts in mycorrhizal coordination in boreal forests

    Get PDF
    Carbon storage and cycling in boreal forests—the largest terrestrial carbon store—ismoderated by complex interactions between trees and soil microorganisms. However,existing methods limit our ability to predict how changes in environmental conditionswill alter these associations and the essential ecosystem services they provide. To addressthis, we developed a metatranscriptomic approach to analyze the impact of nutrientenrichment on Norway sprucefine roots and the community structure, function, andtree–microbe coordination of over 350 root-associated fungal species. In response toaltered nutrient status, host trees redefined their relationship with the fungal commu-nity by reducing sugar efflux carriers and enhancing defense processes. This resulted ina profound restructuring of the fungal community and a collapse in functional coordi-nation between the tree and the dominant Basidiomycete species, and an increase infunctional coordination with versatile Ascomycete species. As such, there was a func-tional  shift  in  community  dominance  from  Basidiomycetes  species,  with  importantroles in enzymatically cycling recalcitrant carbon, to Ascomycete species that have mela-nized cell walls that are highly resistant to degradation. These changes were accompa-nied  by  prominent  shifts  in  transcriptional  coordination  between  over  60  predictedfungal effectors, with more than 5,000 Norway spruce transcripts, providing mechanis-tic insight into the complex molecular dialogue coordinating host trees and their fungalpartners. The host–microbe dynamics captured by this study functionally inform howthese complex and  sensitive biological  relationships may mediate  the carbon  storagepotential of boreal soils under changing nutrient conditions

    Thermal limits of leaf metabolism across biomes

    Get PDF
    High-temperature tolerance in plants is important in a warming world, with extreme heat waves predicted to increase in frequency and duration, potentially leading to lethal heating of leaves. Global patterns of high-temperature tolerance are documented in animals, but generally not in plants, limiting our ability to assess risks associated with climate warming. To assess whether there are global patterns in high-temperature tolerance of leaf metabolism, we quantified Tcrit (high temperature where minimal chlorophyll a fluorescence rises rapidly and thus photosystem II is disrupted) and Tmax (temperature where leaf respiration in darkness is maximal, beyond which respiratory function rapidly declines) in upper canopy leaves of 218 plant species spanning seven biomes. Mean site-based Tcrit values ranged from 41.5 °C in the Alaskan arctic to 50.8 °C in lowland tropical rainforests of Peruvian Amazon. For Tmax, the equivalent values were 51.0 and 60.6 °C in the Arctic and Amazon, respectively. Tcrit and Tmax followed similar biogeographic patterns, increasing linearly (˜8 °C) from polar to equatorial regions. Such increases in high-temperature tolerance are much less than expected based on the 20 °C span in high-temperature extremes across the globe. Moreover, with only modest high-temperature tolerance despite high summer temperature extremes, species in mid-latitude (~20-50°) regions have the narrowest thermal safety margins in upper canopy leaves; these regions are at the greatest risk of damage due to extreme heat-wave events, especially under conditions when leaf temperatures are further elevated by a lack of transpirational cooling. Using predicted heat-wave events for 2050 and accounting for possible thermal acclimation of Tcrit and Tmax, we also found that these safety margins could shrink in a warmer world, as rising temperatures are likely to exceed thermal tolerance limits. Thus, increasing numbers of species in many biomes may be at risk as heat-wave events become more severe with climate change

    Thermal limits of leaf metabolism across biomes

    Get PDF
    High-temperature tolerance in plants is important in a warming world, with extreme heat waves predicted to increase in frequency and duration, potentially leading to lethal heating of leaves. Global patterns of high-temperature tolerance are documented in animals, but generally not in plants, limiting our ability to assess risks associated with climate warming. To assess whether there are global patterns in high-temperature tolerance of leaf metabolism, we quantified Tcrit (high temperature where minimal chlorophyll a fluorescence rises rapidly and thus photosystem II is disrupted) and Tmax (temperature where leaf respiration in darkness is maximal, beyond which respiratory function rapidly declines) in upper canopy leaves of 218 plant species spanning seven biomes. Mean site-based Tcrit values ranged from 41.5 °C in the Alaskan arctic to 50.8 °C in lowland tropical rainforests of Peruvian Amazon. For Tmax, the equivalent values were 51.0 and 60.6 °C in the Arctic and Amazon, respectively. Tcrit and Tmax followed similar biogeographic patterns, increasing linearly (˜8 °C) from polar to equatorial regions. Such increases in high-temperature tolerance are much less than expected based on the 20 °C span in high-temperature extremes across the globe. Moreover, with only modest high-temperature tolerance despite high summer temperature extremes, species in mid-latitude (~20–50°) regions have the narrowest thermal safety margins in upper canopy leaves; these regions are at the greatest risk of damage due to extreme heat-wave events, especially under conditions when leaf temperatures are further elevated by a lack of transpirational cooling. Using predicted heat-wave events for 2050 and accounting for possible thermal acclimation of Tcrit and Tmax, we also found that these safety margins could shrink in a warmer world, as rising temperatures are likely to exceed thermal tolerance limits. Thus, increasing numbers of species in many biomes may be at risk as heat-wave events become more severe with climate change.Access to the two Peruvian sites was also facilitated by a Moore Foundation grant (Oliver Phillips, Yadvinder Mahli, and Jon Lloyd; www.rainfor.org). This work was funded by grants/fellowships from the Australian Research Council (DP0986823, DP130101252, CE140100008, FT0991448) to O.K.A., DP140103415 to M.G.T., FT110100457 to P.M., Natural Environment Research Council (UK) to P.M. (NERC NE/F002149/1), USA National Science Foundation to K.L.G. (DEB-1234162), U.S. Department of Energy to P.B.R. (DE-FG02-7ER64456), and U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research (BER) through the Southeastern Regional Center of the National Institute for Climatic Change Research at Duke University to M.G.T and Texas AgriLife Research to M.G.T
    • …
    corecore