143 research outputs found

    A unified framework for multi-locus association analysis of both common and rare variants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Common, complex diseases are hypothesized to result from a combination of common and rare genetic variants. We developed a unified framework for the joint association testing of both types of variants. Within the framework, we developed a union-intersection test suitable for genome-wide analysis of single nucleotide polymorphisms (SNPs), candidate gene data, as well as medical sequencing data. The union-intersection test is a composite test of association of genotype frequencies and differential correlation among markers.</p> <p>Results</p> <p>We demonstrated by computer simulation that the false positive error rate was controlled at the expected level. We also demonstrated scenarios in which the multi-locus test was more powerful than traditional single marker analysis. To illustrate use of the union-intersection test with real data, we analyzed a publically available data set of 319,813 autosomal SNPs genotyped for 938 cases of Parkinson disease and 863 neurologically normal controls for which no genome-wide significant results were found by traditional single marker analysis. We also analyzed an independent follow-up sample of 183 cases and 248 controls for replication.</p> <p>Conclusions</p> <p>We identified a single risk haplotype with a directionally consistent effect in both samples in the gene <it>GAK</it>, which is involved in clathrin-mediated membrane trafficking. We also found suggestive evidence that directionally inconsistent marginal effects from single marker analysis appeared to result from risk being driven by different haplotypes in the two samples for the genes <it>SYN3 </it>and <it>NGLY1</it>, which are involved in neurotransmitter release and proteasomal degradation, respectively. These results illustrate the utility of our unified framework for genome-wide association analysis of common, complex diseases.</p

    Microevolutionary analysis of Clostridium difficile genomes to investigate transmission

    Get PDF
    Background The control of Clostridium difficile infection is a major international healthcare priority, hindered by a limited understanding of transmission epidemiology for these bacteria. However, transmission studies of bacterial pathogens are rapidly being transformed by the advent of next generation sequencing. Results Here we sequence whole C. difficile genomes from 486 cases arising over four years in Oxfordshire. We show that we can estimate the times back to common ancestors of bacterial lineages with sufficient resolution to distinguish whether direct transmission is plausible or not. Time depths were inferred using a within-host evolutionary rate that we estimated at 1.4 mutations per genome per year based on serially isolated genomes. The subset of plausible transmissions was found to be highly associated with pairs of patients sharing time and space in hospital. Conversely, the large majority of pairs of genomes matched by conventional typing and isolated from patients within a month of each other were too distantly related to be direct transmissions. Conclusions Our results confirm that nosocomial transmission between symptomatic C. difficile cases contributes far less to current rates of infection than has been widely assumed, which clarifies the importance of future research into other transmission routes, such as from asymptomatic carriers. With the costs of DNA sequencing rapidly falling and its use becoming more and more widespread, genomics will revolutionize our understanding of the transmission of bacterial pathogens

    A large multi-country outbreak of monkeypox across 41 countries in the WHO European Region, 7 March to 23 August 2022

    Get PDF
    Following the report of a non-travel-associated cluster of monkeypox cases by the United Kingdom in May 2022, 41 countries across the WHO European Region have reported 21,098 cases and two deaths by 23 August 2022. Nowcasting suggests a plateauing in case notifications. Most cases (97%) are MSM, with atypical rash-illness presentation. Spread is mainly through close contact during sexual activities. Few cases are reported among women and children. Targeted interventions of at-risk groups are needed to stop further transmission. © 2022 European Centre for Disease Prevention and Control (ECDC). All rights reserved.The authors affiliated with the World Health Organization (WHO) are alone responsible for the views expressed in this publication and they do not necessarily represent the decisions or policies of the WHO. The co-author is a fellow of the ECDC Fellowship Programme, supported financially by the European Centre for Disease Prevention and Control (ECDC). The views and opinions expressed herein do not state or reflect those of ECDC. ECDC is not responsible for the data and information collation and analysis and cannot be held liable for conclusions or opinions drawn

    Host Genes Related to Paneth Cells and Xenobiotic Metabolism Are Associated with Shifts in Human Ileum-Associated Microbial Composition

    Get PDF
    The aim of this study was to integrate human clinical, genotype, mRNA microarray and 16 S rRNA sequence data collected on 84 subjects with ileal Crohn’s disease, ulcerative colitis or control patients without inflammatory bowel diseases in order to interrogate how host-microbial interactions are perturbed in inflammatory bowel diseases (IBD). Ex-vivo ileal mucosal biopsies were collected from the disease unaffected proximal margin of the ileum resected from patients who were undergoing initial intestinal surgery. Both RNA and DNA were extracted from the mucosal biopsy samples. Patients were genotyped for the three major NOD2 variants (Leufs1007, R702W, and G908R) and the ATG16L1T300A variant. Whole human genome mRNA expression profiles were generated using Agilent microarrays. Microbial composition profiles were determined by 454 pyrosequencing of the V3–V5 hypervariable region of the bacterial 16 S rRNA gene. The results of permutation based multivariate analysis of variance and covariance (MANCOVA) support the hypothesis that host mucosal Paneth cell and xenobiotic metabolism genes play an important role in host microbial interactions
    corecore