54 research outputs found

    Vertical movements of shortfin mako sharks Isurus oxyrinchus in the western North Atlantic Ocean are strongly influenced by temperature

    Get PDF
    Although shortfin mako sharks Isurus oxyrinchus are regularly encountered in pelagic fisheries, limited information is available on their vertical distribution and is primarily restricted to cooler areas of their geographic range. We investigated the vertical movements of mako sharks across differing temperature regimes within the western North Atlantic by tagging 8 individuals with pop-up satellite archival tags off the northeastern United States and the Yucatan Peninsula, Mexico. Depth and temperature records across 587 d showed vertical movements strongly associated with ocean temperature. Temperatures150 m compared to only 1% in the coldest water columns. The sharks showed diel diving behavior, with deeper dives occurring primarily during the daytime (maximum depth: 866 m). Overall, sharks experienced temperatures between 5.2 and 31.1°C. When the opportunity was available, sharks spent considerable time in waters ranging from 22 to 27°C, indicating underestimation of the previously reported upper limit of the mako sharks’ preferred temperature. The preference for higher temperatures does not support endothermy as an adaption for niche expansion in mako sharks. The strong influence of thermal habitat on movement behavior suggests potentially strong impacts of rising ocean temperatures on the ecology of this highly migratory top predator

    Comparative Use of a Caribbean Mesophotic Coral Ecosystem and Association with Fish Spawning Aggregations by Three Species of Shark

    Get PDF
    Understanding of species interactions within mesophotic coral ecosystems (MCEs; ~ 30–150 m) lags well behind that for shallow coral reefs. MCEs are often sites of fish spawning aggregations (FSAs) for a variety of species, including many groupers. Such reproductive fish aggregations represent temporal concentrations of potential prey that may be drivers of habitat use by predatory species, including sharks. We investigated movements of three species of sharks within a MCE and in relation to FSAs located on the shelf edge south of St. Thomas, United States Virgin Islands. Movements of 17 tiger (Galeocerdo cuvier), seven lemon (Negaprion brevirostris), and six Caribbean reef (Carcharhinus perezi) sharks tagged with acoustic transmitters were monitored within the MCE using an array of acoustic receivers spanning an area of 1,060 km2 over a five year period. Receivers were concentrated around prominent grouper FSAs to monitor movements of sharks in relation to these temporally transient aggregations. Over 130,000 detections of telemetered sharks were recorded, with four sharks tracked in excess of 3 years. All three shark species were present within the MCE over long periods of time and detected frequently at FSAs, but patterns of MCE use and orientation towards FSAs varied both spatially and temporally among species. Lemon sharks moved over a large expanse of the MCE, but concentrated their activities around FSAs during grouper spawning and were present within the MCE significantly more during grouper spawning season. Caribbean reef sharks were present within a restricted portion of the MCE for prolonged periods of time, but were also absent for long periods. Tiger sharks were detected throughout the extent of the acoustic array, with the MCE representing only portion of their habitat use, although a high degree of individual variation was observed. Our findings indicate that although patterns of use varied, all three species of sharks repeatedly utilized the MCE and as upper trophic level predators they are likely involved in a range of interactions with other members of MCEs

    Intraspecific variation in vertical habitat use by tiger sharks (\u3cem\u3eGaleocerdo cuvier\u3c/em\u3e) in the western North Atlantic

    Get PDF
    Tiger sharks (Galeocerdo cuvier) are a wide ranging, potentially keystone predator species that display a variety of horizontal movement patterns, making use of coastal and pelagic waters. Far less, however, is known about their vertical movements and use of the water column. We used pop‐up satellite archival tags with two data sampling rates (high rate and standard rate tags) to investigate the vertical habitat use and diving behavior of tiger sharks tagged on the Puerto Rico–Virgin Islands platform and off Bermuda between 2008 and 2009. Useable data were received from nine of 14 sharks tagged, tracked over a total of 529 days. Sharks spent the majority of their time making yo‐yo dives within the upper 50 m of the water column and considerable time within the upper 5 m of the water column. As a result, sharks typically occupied a narrow daily temperature range (~2°C). Dives to greater than 200 m were common, and all sharks made dives to at least 250 m, with one shark reaching a depth of 828 m. Despite some similarities among individuals, a great deal of intraspecific variability in vertical habit use was observed. Four distinct depth distributions that were not related to tagging location, horizontal movements, sex, or size were detected. In addition, similar depth distributions did not necessitate similar dive patterns among sharks. Recognition of intraspecific variability in habitat use of top predators can be crucial for effective management of these species and for understanding their influence on ecosystem dynamics

    A global perspective on the trophic geography of sharks

    Get PDF
    Sharks are a diverse group of mobile predators that forage across varied spatial scales and have the potential to influence food web dynamics. The ecological consequences of recent declines in shark biomass may extend across broader geographic ranges if shark taxa display common behavioural traits. By tracking the original site of photosynthetic fixation of carbon atoms that were ultimately assimilated into muscle tissues of 5,394 sharks from 114 species, we identify globally consistent biogeographic traits in trophic interactions between sharks found in different habitats. We show that populations of shelf-dwelling sharks derive a substantial proportion of their carbon from regional pelagic sources, but contain individuals that forage within additional isotopically diverse local food webs, such as those supported by terrestrial plant sources, benthic production and macrophytes. In contrast, oceanic sharks seem to use carbon derived from between 30° and 50° of latitude. Global-scale compilations of stable isotope data combined with biogeochemical modelling generate hypotheses regarding animal behaviours that can be tested with other methodological approaches.This research was conducted as part of C.S.B.’s Ph.D dissertation, which was funded by the University of Southampton and NERC (NE/L50161X/1), and through a NERC Grant-in-Kind from the Life Sciences Mass Spectrometry Facility (LSMSF; EK267-03/16). We thank A. Bates, D. Sims, F. Neat, R. McGill and J. Newton for their analytical contributions and comments on the manuscripts.Peer reviewe

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Global Spatial Risk Assessment of Sharks Under the Footprint of Fisheries

    Get PDF
    Effective ocean management and conservation of highly migratory species depends on resolving overlap between animal movements and distributions and fishing effort. Yet, this information is lacking at a global scale. Here we show, using a big-data approach combining satellite-tracked movements of pelagic sharks and global fishing fleets, that 24% of the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries. Space use hotspots of commercially valuable sharks and of internationally protected species had the highest overlap with longlines (up to 76% and 64%, respectively) and were also associated with significant increases in fishing effort. We conclude that pelagic sharks have limited spatial refuge from current levels of high-seas fishing effort. Results demonstrate an urgent need for conservation and management measures at high-seas shark hotspots and highlight the potential of simultaneous satellite surveillance of megafauna and fishers as a tool for near-real time, dynamic management

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Diel and seasonal variation in the use of a nearshore sandflat by a ray community in a near pristine system

    No full text
    Knowledge of movements and habitat use is necessary to assess a species’ ecological role and is especially important for mesopredators because they provide the link between upper and lower trophic levels. Using acoustic telemetry, we examined coarse-scale diel and seasonal movements of elasmobranch mesopredators on a shallow sandflat in Shark Bay, Western Australia. Giant shovelnose rays (Glaucostegus typus) and reticulate whiprays (Himantura uarnak) were most often detected in nearshore microhabitats and were regularly detected throughout the day and year, although reticulate whiprays tended to frequent the monitored array over longer periods. Pink whiprays (H. fai) and cowtail stingrays (Pastinachus atrus) were also detected throughout the day, but were far less frequently detected. Overall, there was no apparent spatial or temporal partitioning of the sandflats, but residency to the area varied between species. In addition, ray presence throughout the year suggests that previously observed differences in seasonal abundance are likely because of seasonal changes in habitat use rather than large-scale migrations. Continuous use of the sandflats and limited movements within this ray community suggests that rays have the potential to be a structuring force on this system and that focusing on nearshore habitats is important for managing subtropical ray populations

    Microhabitat selection by marine mesoconsumers in a thermally heterogeneous habitat: behavioral thermoregulation or avoiding predation risk?

    Get PDF
    Habitat selection decisions by consumers has the potential to shape ecosystems. Understanding the factors that influence habitat selection is therefore critical to understanding ecosystem function. This is especially true of mesoconsumers because they provide the link between upper and lower tropic levels. We examined the factors influencing microhabitat selection of marine mesoconsumers - juvenile giant shovelnose rays (Glaucostegus typus), reticulate whiprays (Himantura uarnak), and pink whiprays (H. fai) - in a coastal ecosystem with intact predator and prey populations and marked spatial and temporal thermal heterogeneity. Using a combination of belt transects and data on water temperature, tidal height, prey abundance, predator abundance and ray behavior, we found that giant shovelnose rays and reticulate whiprays were most often found resting in nearshore microhabitats, especially at low tidal heights during the warm season. Microhabitat selection did not match predictions derived from distributions of prey. Although at a course scale, ray distributions appeared to match predictions of behavioral thermoregulation theory, fine-scale examination revealed a mismatch. The selection of the shallow nearshore microhabitat at low tidal heights during periods of high predator abundance (warm season) suggests that this microhabitat may serve as a refuge, although it may come with metabolic costs due to higher temperatures. The results of this study highlight the importance of predators in the habitat selection decisions of mesoconsumers and that within thermal gradients, factors, such as predation risk, must be considered in addition to behavioral thermoregulation to explain habitat selection decisions. Furthermore, increasing water temperatures predicted by climate change may result in complex trade-offs that might have important implications for ecosystem dynamics
    • 

    corecore