5 research outputs found

    Plasmid-Borne and Chromosomal ESBL/AmpC Genes in Escherichia coli and Klebsiella pneumoniae in Global Food Products

    Get PDF
    Plasmid-mediated extended-spectrum beta-lactamase (ESBL), AmpC, and carbapenemase producing Enterobacteriaceae, in particular Escherichia coli and Klebsiella pneumoniae, with potential zoonotic transmission routes, are one of the greatest threats to global health. The aim of this study was to investigate global food products as potential vehicles for ESBL/AmpC-producing bacteria and identify plasmids harboring resistance genes. We sampled 200 food products purchased from Finland capital region during fall 2018. Products originated from 35 countries from six continents and represented four food categories: vegetables (n = 60), fruits and berries (n = 50), meat (n = 60), and seafood (n = 30). Additionally, subsamples (n = 40) were taken from broiler meat. Samples were screened for ESBL/AmpC-producing Enterobacteriaceae and whole genome sequenced to identify resistance and virulence genes and sequence types (STs). To accurately identify plasmids harboring resistance and virulence genes, a hybrid sequence analysis combining long- and short-read sequencing was employed. Sequences were compared to previously published plasmids to identify potential epidemic plasmid types. Altogether, 14 out of 200 samples were positive for ESBL/AmpC-producing E. coli and/or K. pneumoniae. Positive samples were recovered from meat (18%; 11/60) and vegetables (5%; 3/60) but were not found from seafood or fruit. ESBL/AmpC-producing E. coli and/or K. pneumoniae was found in 90% (36/40) of broiler meat subsamples. Whole genome sequencing of selected isolates (n = 21) revealed a wide collection of STs, plasmid replicons, and genes conferring multidrug resistance. bla(CTX-M-15)-producing K. pneumoniae ST307 was identified in vegetable (n = 1) and meat (n = 1) samples. Successful IncFII plasmid type was recovered from vegetable and both IncFII and IncI1-I gamma types from meat samples. Hybrid sequence analysis also revealed chromosomally located beta-lactamase genes in two of the isolates and indicated similarity of food-derived plasmids to other livestock-associated sources and also to plasmids obtained from human clinical samples from various countries, such as IncI type plasmid harboring bla(TEM-52C) from a human urine sample obtained in the Netherlands which was highly similar to a plasmid obtained from broiler meat in this study. Results indicate certain foods contain bacteria with multidrug resistance and pose a possible risk to public health, emphasizing the importance of surveillance and the need for further studies on epidemiology of epidemic plasmids.Peer reviewe

    Validation of EN ISO method 10273-Detection of pathogenic Yersinia enterocolitica in foods

    Get PDF
    EN ISO 10273 method for the detection of pathogenic Yersinia enterocolitica in foods was validated in the project Mandate M/381 funded by European Commission. A total of 14 laboratories from five European countries participated in the interlaboratory study (ILS) organized during 2013 and 2014. Before the ITS, the method was revised by an international group of experts and the performance of the revised method was assessed in an ILS study. The results are published as a part of the standard EN ISO 10273 revision. The study included three rounds with different sample types; raw milk, iceberg lettuce and minced meat, inoculated with a low and high level of pathogenic Y. enterocolitica strains representing major pathogenic bioserotypes 4/O:3 and 2/O:9. The homogeneity and stability of the samples were verified before dispatching them to the laboratories. The results demonstrated the method sensitivity of 96% in raw milk, 97% in minced meat, and 98% in lettuce at high inoculation level of pathogenic Y. enterocolitica. The specificity was 100% in raw milk, 96% in minced meat, and 98% in lettuce. The level of detection, LOD50, varied between study rounds, being 9.4 CFU/25 ml in raw milk, 9.9 CFU/25 g in minced meat and 63 CFU/25 g in lettuce samples. During the study, confirmation by using real-time PCR method ISO/TS 18867 together with pyrazinamidase testing was also validated, as alternative to conventional biochemical confirmation. When comparing different isolation steps used in the revised method during the study rounds, PSB enrichment and plating on CIN after alkaline (KOH) treatment showed the highest sensitivity (52-92%) in raw milk and minced meat samples. In lettuce samples, however, ITC with KOH treatment before plating on CIN showed higher sensitivity (64% at low level; 82% at high level) than plating on CIN from PSB with KOH treatment (44% at low level; 74% at high level). Statistical analysis of different isolation steps supported the use of two enrichment media, PSB and ITC, in the revised method. Recovery of pathogenic Y. enterocolitica on ON was most efficient after KOH treatment and, based on the analysis, plating on CIN agar without KOH treatment could be left as optional procedure in the method.Peer reviewe

    Raskin mikrobien vuorovaikutukset

    No full text
    corecore