96 research outputs found

    Aspects of a two-pasture — herbivore model

    Get PDF
    Pastures for reindeer can be divided into green pastures (mainly herbs and grasses) of summer time and more or less snow-covered lichen pastures of winter. Fall and spring pastures have a composition in-between these extremes, but for model purposes bisection is sufficient. For the animals the green-pasture season is an anabolic phase with a physiological building-up of protein reserves, while winter is a catabolic phase where food-intake is reduced and the animals to a considerable extent survive on the accumulated reserves from summer. While protein reserves are stored from summer to winter, lichen pastures are stored from year to year. Grasses and herbs not being grazed are wilting by the end of the growing season, while lichens not grazed can live for many years. This corresponds with fundamental differences in both growth pattern and resilience. The implications of the different features, and their interconnections, are not easy to survey without formal modeling. The point of departure is a simple pasture-herbivore model, well known from the literature building on a set of differential equations. A new two-pasture-herbivore model is developed. The model includes as basic elements the Klein (1968) hypothesis and that a residual lichen biomass is kept ungrazed due to snow-cover protection. Further the annual cycle is divided into four stylized seasons with herd rates of winter survival, spring calving, summer physiological growth and fall slaughtering. Isoclines are derived for summer pasture, winter pasture and herbivores. Stability properties are discussed in relation to various situations of seasonal pasture balance. Empirical examples, particularly that of changes in pasture balance and vegetation cover in Western Finnmark, Norway, are discussed. The article finds that the two-pasture model provides important features of reality, such as the stability aspects of pasture balance, which cannot be displayed by a one-pasture model. It is suggested that this type of modeling can be used as a basis for further research, e.g. implications of climate change

    Integrating Economics and Ecology

    Get PDF
    SupplementThis report documents the results from an analysis of policy measures to reduce losses of nitrogen, phosphorus and soil from the agricultural sector to the environment. These kinds of losses are nonpoint, and standard emission oriented policy measures like effluent taxes are prohibitively costly to use. The policy altematives are therefore to regulate the input of potentially polluting substances - in this case reduce the use of fertilizers, to prescribe changes in agronomic practices as conducted on the farm or to change product prices. Principally this study analyzes the effects of these types of regulations, their ability to reduce losses of nutrients and soil, and the private and social costs thereby invoked

    Forelesningsnotater omkring landbrukspolitikken

    Get PDF

    ECECMOD: an interdisciplinary modelling system for analyzing nutrient and soil losses from agriculture

    Get PDF
    Abstract This article discusses a set of principles for policy analysis of environmental problems. The main focus is on integrating economic and ecological analyses through a mathematical modelling framework. The paper starts by developing a general model for the study of environmental issues. Principles for operationalizing the model are discussed, and ECECMOD (a new modelling system constructed to analyze pollution from agricultural systems on the basis of these principles) is introduced. Some of the results obtained by ECECMOD are presented to facilitate a discussion about the gains to be obtained by this kind of analysis. The study shows that it is of great importance to combine economic and ecological analyses at a fairly high level of resolution when studying environmental effects of complex systems

    Distinct high resolution genome profiles of early onset and late onset colorectal cancer integrated with gene expression data identify candidate susceptibility loci

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Estimates suggest that up to 30% of colorectal cancers (CRC) may develop due to an increased genetic risk. The mean age at diagnosis for CRC is about 70 years. Time of disease onset 20 years younger than the mean age is assumed to be indicative of genetic susceptibility. We have compared high resolution tumor genome copy number variation (CNV) (Roche NimbleGen, 385 000 oligo CGH array) in microsatellite stable (MSS) tumors from two age groups, including 23 young at onset patients without known hereditary syndromes and with a median age of 44 years (range: 28-53) and 17 elderly patients with median age 79 years (range: 69-87). Our aim was to identify differences in the tumor genomes between these groups and pinpoint potential susceptibility loci. Integration analysis of CNV and genome wide mRNA expression data, available for the same tumors, was performed to identify a restricted candidate gene list.</p> <p>Results</p> <p>The total fraction of the genome with aberrant copy number, the overall genomic profile and the <it>TP53 </it>mutation spectrum were similar between the two age groups. However, both the number of chromosomal aberrations and the number of breakpoints differed significantly between the groups. Gains of 2q35, 10q21.3-22.1, 10q22.3 and 19q13.2-13.31 and losses from 1p31.3, 1q21.1, 2q21.2, 4p16.1-q28.3, 10p11.1 and 19p12, positions that in total contain more than 500 genes, were found significantly more often in the early onset group as compared to the late onset group. Integration analysis revealed a covariation of DNA copy number at these sites and mRNA expression for 107 of the genes. Seven of these genes, <it>CLC, EIF4E</it>, <it>LTBP4, PLA2G12A, PPAT</it>, <it>RG9MTD2</it>, and <it>ZNF574</it>, had significantly different mRNA expression comparing median expression levels across the transcriptome between the two groups.</p> <p>Conclusions</p> <p>Ten genomic loci, containing more than 500 protein coding genes, are identified as more often altered in tumors from early onset versus late onset CRC. Integration of genome and transcriptome data identifies seven novel candidate genes with the potential to identify an increased risk for CRC.</p

    DNA Sequence Profiles of the Colorectal Cancer Critical Gene Set KRAS-BRAF-PIK3CA-PTEN-TP53 Related to Age at Disease Onset

    Get PDF
    The incidence of colorectal cancer (CRC) increases with age and early onset indicates an increased likelihood for genetic predisposition for this disease. The somatic genetics of tumor development in relation to patient age remains mostly unknown. We have examined the mutation status of five known cancer critical genes in relation to age at diagnosis, and compared the genomic complexity of tumors from young patients without known CRC syndromes with those from elderly patients. Among 181 CRC patients, stratified by microsatellite instability status, DNA sequence changes were identified in KRAS (32%), BRAF (16%), PIK3CA (4%), PTEN (14%) and TP53 (51%). In patients younger than 50 years (n = 45), PIK3CA mutations were not observed and TP53 mutations were more frequent than in the older age groups. The total gene mutation index was lowest in tumors from the youngest patients. In contrast, the genome complexity, assessed as copy number aberrations, was highest in tumors from the youngest patients. A comparable number of tumors from young (<50 years) and old patients (>70 years) was quadruple negative for the four predictive gene markers (KRAS-BRAF-PIK3CA-PTEN); however, 16% of young versus only 1% of the old patients had tumor mutations in PTEN/PIK3CA exclusively. This implies that mutation testing for prediction of EGFR treatment response may be restricted to KRAS and BRAF in elderly (>70 years) patients. Distinct genetic differences found in tumors from young and elderly patients, whom are comparable for known clinical and pathological variables, indicate that young patients have a different genetic risk profile for CRC development than older patients

    Diverse values of nature for sustainability

    Get PDF
    Twenty-five years since foundational publications on valuing ecosystem services for human well-being(1,2), addressing the global biodiversity crisis(3) still implies confronting barriers to incorporating nature's diverse values into decision-making. These barriers include powerful interests supported by current norms and legal rules such as property rights, which determine whose values and which values of nature are acted on. A better understanding of how and why nature is (under)valued is more urgent than ever(4). Notwithstanding agreements to incorporate nature's values into actions, including the Kunming-Montreal Global Biodiversity Framework (GBF)(5) and the UN Sustainable Development Goals(6), predominant environmental and development policies still prioritize a subset of values, particularly those linked to markets, and ignore other ways people relate to and benefit from nature(7). Arguably, a 'values crisis' underpins the intertwined crises of biodiversity loss and climate change(8), pandemic emergence(9) and socio-environmental injustices(10). On the basis of more than 50,000 scientific publications, policy documents and Indigenous and local knowledge sources, the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) assessed knowledge on nature's diverse values and valuation methods to gain insights into their role in policymaking and fuller integration into decisions(7,11). Applying this evidence, combinations of values-centred approaches are proposed to improve valuation and address barriers to uptake, ultimately leveraging transformative changes towards more just (that is, fair treatment of people and nature, including inter- and intragenerational equity) and sustainable futures
    • …
    corecore