90 research outputs found

    Challenges in materials research for sustainable nuclear energy

    Get PDF
    Global energy demand is expected to increase steeply, creating an urgent need to evolve a judicious global energy policy, exploiting the potential of all available energy resources, including nuclear energy. With increasing awareness of environmental issues, nuclear energy is expected to play an important role on the energy scenario in the coming decades. The immediate thrust in the science and technology of nuclear materials is to realize a robust reactor technology with associated fuel cycle and ensure the cost competitiveness of nuclear power and to extend the service life of reactors to 100 years. Accordingly, the present-generation materials need to be modified to meet the demands of prolonged exposure to irradiation and extended service life for the reactor. Emerging nuclear systems incorporate features to ensure environmental friendliness, effective waste management, enhanced safety, and proliferation resistance and require development of high-temperature materials and the associated technologies. Fusion, on a longer horizon of about fve decades, also requires the development of a new spectrum of materials. The development of next-generation materials technology is expected to occur in short times and is likely to be further accelerated by strong international collaborations

    Development of fuels and structural materials for fast breeder reactors

    Get PDF
    Fast breeder reactors (FBRs) are destined to play a crucial role in the Indian nuclear power programme in the foreseeable future. FBR technology involves a multi-disciplinary approach to solve the various challenges in the areas of fuel and materials development. Fuels for FBRs have significantly higher concentration of fissile material than in thermal reactors, with a matching increase in burn-up. The design of the fuel is an important aspect which has to be optimised for efficient, economic and safe production of power. FBR components operate under hostile and demanding environment of high neutron flux, liquid sodium coolant and elevated temperatures. Resistance to void swelling, irradiation creep, and irradiation embrittlement are therefore major considerations in the choice of materials for the core components. Structural and steam generator materials should have good resistance to creep, low cycle fatigue, creep-fatigue interaction and sodium corrosion. The development of carbide fuel and structural materials for the Fast Breeder Test Reactor at Kalpakkam was a great technological challenge. At the Indira Gandhi Centre for Atomic Research (IGCAR), advanced research facilities have been established, and extensive studies have been carried out in the areas of fuel and materials development. This has laid the foundation for the design and development of a 500 MWe Prototype Fast Breeder Reactor. Highlights of some of these studies are discussed in this paper in the context of our mission to develop and deploy FBR technology for the energy security of India in the 21st century

    Traditional use of medicinal plants by the Jaintia tribes in North Cachar Hills district of Assam, northeast India

    Get PDF
    The study of ethnobotany relating to any tribe is in itself a very intricate or convoluted process. This paper documents the traditional knowledge of medicinal plants that are in use by the indigenous Jaintia tribes residing in few isolated pockets of northeast India. The present study was done through structured questionnaires in consultations with the tribal practitioners and has resulted in the documentation of 39 medicinal plant species belonging to 27 families and 35 genera. For curing diverse form of ailments, the use of aboveground plant parts was higher (76.59%) than the underground plant parts (23.41%). Of the aboveground plant parts, leaf was used in the majority of cases (23 species), followed by fruit (4). Different underground plant forms such as root, tuber, rhizome, bulb and pseudo-bulb were also found to be in use by the Jaintia tribe as a medicine. Altogether, 30 types of ailments have been reported to be cured by using these 39 medicinal plant species. The study thus underlines the potentials of the ethnobotanical research and the need for the documentation of traditional ecological knowledge pertaining to the medicinal plant utilization for the greater benefit of mankind

    Structural dynamics and catalytic properties of a multimodular xanthanase

    Get PDF
    The precise catalytic strategies used for the breakdown of the complex bacterial polysaccharide xanthan, an increasingly frequent component of processed human foodstuffs, have remained a mystery. Here, we present characterization of an endo-xanthanase from Paenibacillus nanensis. We show that it is a CAZy family 9 glycoside hydrolase (GH9) responsible for the hydrolysis of the xanthan backbone capable of generating tetrameric xanthan oligosaccharides from polysaccharide lyase family 8 (PL8) xanthan lyase-treated xanthan. Three-dimensional structure determination reveals a complex multimodular enzyme in which a catalytic (α/α) 6 barrel is flanked by an N-terminal "immunoglobulin-like" (Ig-like) domain (frequently found in GH9 enzymes) and by four additional C-terminal all β-sheet domains that have very few homologues in sequence databases and at least one of which functions as a new xanthan-binding domain, now termed CBM84. The solution-phase conformation and dynamics of the enzyme in the native calcium-bound state and in the absence of calcium were probed experimentally by hydrogen/deuterium exchange mass spectrometry. Measured conformational dynamics were used to guide the protein engineering of enzyme variants with increased stability in the absence of calcium; a property of interest for the potential use of the enzyme in cleaning detergents. The ability of hydrogen/deuterium exchange mass spectrometry to pinpoint dynamic regions of a protein under stress (e.g., removal of calcium ions) makes this technology a strong tool for improving protein catalyst properties by informed engineering

    Radioactivity in monitoring materials processing

    No full text
    Monitoring of the concentration of actinides in process streams and waste materials can be effectively carried out by detecting and measuring their radioactive emissions. Such monitoring techniques lead to more efficient control of the process, and also aid in the minimisation of losses to the waste and better accounting of the nuclear materials. This paper provides an overview of some of the techniques such as on-line alpha monitoring, passive and active neutron assay and gamma counting, and also describes the monitoring systems which have been developed in our laboratory for use in a reprocessing plant

    Reaction of buckminsterfullerene with 1,3-diphenylnitrilimine: synthesis of pyrazoline derivatives of fullerene

    No full text
    1,3-diphenylnitrilimine generated in situ undergoes 1,3-dipolar cycloaddition with C60 to form a diadduct which is characterised by FAB mass spectrum and other spectroscopic techniques. C60 reacts with 1,3-diphenylnitrilimine to form a diadduct

    The effect of diluent on third phase formation in thorium nitrate - TBP system: some novel empirical correlations

    No full text
    The limiting organic phase concentration (LOC) above which a third phase forms, in Thorium Nitrate - 30% TBP/Diluent system has been shown to have a good correlation with some parameters which characterise the diluent such as Connectivity Index, Wiener Number and Diluent Parameter. Aliphatic, alicyclic, aromatic and halocarbon type diluents have been used in this study. The LOC has also been found to be additive for mixtures of diluents. The results make it possible to predict third phase formation in systems where the diluent composition is known
    corecore