54 research outputs found

    MARs Wars: heterogeneity and clustering of DNA-binding domains in the nuclear matrix

    Get PDF
    Aim. CO326 is a chicken nuclear scaffold/matrix attachment region (MAR) associated with the nuclear matrix in several types of chicken cells. It contains a binding site for a sequence-specific DNA-binding protein, F326. We have studied its interaction with the nuclear matrix. Methods. We have used an in vitro MAR assay with isolated matrices from chicken HD3 cells. Results. We have found that an oligonucleotide binding site for the F326 inhibits binding of the CO326 to the nuclear matrix. At the same time, the binding of heterologous MARs is enhanced. Conclusions. Taken together, these data suggest that there exist several classes of MARs and MAR-binding domains and that the MAR-binding proteins may be clustered in the nuclear matrix

    Ectopic expression of inactive forms of yeast DNA topoisomerase II confers resistance to the anti-tumour drug, etoposide.

    Get PDF
    Drug resistance to anti-tumour agents often coincides with mutations in the gene encoding DNA topoisomerase II alpha. To examine how inactive forms of topoisomerase II can influence resistance to the chemotherapeutic agent VP-16 (etoposide) in the presence of a wild-type allele, we have expressed point mutations and carboxy-terminal truncations of yeast topoisomerase II from a plasmid in budding yeast. Truncations that terminate the coding region of topoisomerase II at amino acid (aa) 750, aa 951 and aa 1044 are localised to both the cytosol and the nucleus and fail to complement a temperature-sensitive top2-1 allele at non-permissive temperature. In contrast, the plasmid-borne wild-type TOP2 allele and a truncation at aa 1236 are nuclear localised and complement the top2-1 mutation. At low levels of expression, truncated forms of topoisomerase II render yeast resistant to levels of etoposide 2- and 3-fold above that tolerated by cells expressing the full-length enzyme. Maximal resistance is conferred by the full-length enzyme carrying a mutated active site (Y783F) or a truncation at aa 1044. The level of phosphorylation of topoisomerase II was previously shown to correlate with drug resistance in cultured cells, hence we tested mutants in the major casein kinase II acceptor sites in the C-terminal domain of yeast topoisomerase II for changes in drug sensitivity. Neither ectopic expression of the C-terminal domain alone nor phosphoacceptor site mutants significantly alter the host cell's sensitivity to etoposide

    FSHD myoblasts fail to downregulate intermediate filament protein vimentin during myogenic differentiation.

    Get PDF
    Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant hereditary neuromuscular disorder. The clinical features of FSHD include weakness of the facial and shoulder girdle muscles followed by wasting of skeletal muscles of the pelvic girdle and lower extremities. Although FSHD myoblasts grown in vitro can be induced to differentiate into myotubes by serum starvation, the resulting FSHD myotubes have been shown previously to be morphologically abnormal. Aim. In order to find the cause of morphological anomalies of FSHD myotubes we compared in vitro myogenic differentiation of normal and FSHD myoblasts at the protein level. Methods. We induced myogenic differentiation of normal and FSHD myoblasts by serum starvation. We then compared protein extracts from proliferating myoblasts and differentiated myotubes using SDS-PAGE followed by mass spectrometry identification of differentially expressed proteins. Results. We demonstrated that the expression of vimentin was elevated at the protein and mRNA levels in FSHD myotubes as compared to normal myotubes. Conclusions. We demonstrate for the first time that in contrast to normal myoblasts, FSHD myoblasts fail to downregulate vimentin after induction of in vitro myogenic differentiation. We suggest that vimentin could be an easily detectable marker of FSHD myotube

    Transcription factories in the context of the nuclear and genome organization

    Get PDF
    In the eukaryotic nucleus, genes are transcribed in transcription factories. In the present review, we re-evaluate the models of transcription factories in the light of recent and older data. Based on this analysis, we propose that transcription factories result from the aggregation of RNA polymerase II-containing pre-initiation complexes assembled next to each other in the nuclear space. Such an aggregation can be triggered by the phosphorylation of the C-terminal domain of RNA polymerase II molecules and their interaction with various transcription factors. Individual transcription factories would thus incorporate tissue-specific, co-regulated as well as housekeeping genes based only on their initial proximity to each other in the nuclear space. Targeting genes to be transcribed to protein-dense factories that contain all factors necessary for transcription initiation and elongation through chromatin templates clearly favors a more economical utilization and better recycling of the transcription machinery

    Expression-Dependent Folding of Interphase Chromatin

    Get PDF
    Multiple studies suggest that chromatin looping might play a crucial role in organizing eukaryotic genomes. To investigate the interplay between the conformation of interphase chromatin and its transcriptional activity, we include information from gene expression profiles into a polymer model for chromatin that incorporates genomic loops. By relating loop formation to transcriptional activity, we are able to generate chromosome conformations whose structural and topological properties are consistent with experimental data. The model particularly allows to reproduce the conformational variations that are known to occur between highly and lowly expressed chromatin regions. As previously observed in experiments, lowly expressed regions of the simulated polymers are much more compact. Due to the changes in loop formation, the distributions of chromatin loops are also expression-dependent and exhibit a steeper decay in highly active regions. As a results of entropic interaction between differently looped parts of the chromosome, we observe topological alterations leading to a preferential positioning of highly transcribed loci closer to the surface of the chromosome territory. Considering the diffusional behavior of the chromatin fibre, the simulations furthermore show that the higher the expression level of specific parts of the chromatin fibre is, the more dynamic they are. The results exhibit that variations of loop formation along the chromatin fibre, and the entropic changes that come along with it, do not only influence the structural parameters on the local scale, but also effect the global chromosome conformation and topology

    Analyses of carnivore microsatellites and their intimate association with tRNA-derived SINEs

    Get PDF
    BACKGROUND: The popularity of microsatellites has greatly increased in the last decade on account of their many applications. However, little is currently understood about the factors that influence their genesis and distribution among and within species genomes. In this work, we analyzed carnivore microsatellite clones from GenBank to study their association with interspersed repeats and elucidate the role of the latter in microsatellite genesis and distribution. RESULTS: We constructed a comprehensive carnivore microsatellite database comprising 1236 clones from GenBank. Thirty-three species of 11 out of 12 carnivore families were represented, although two distantly related species, the domestic dog and cat, were clearly overrepresented. Of these clones, 330 contained tRNA(Lys)-derived SINEs and 357 contained other interspersed repeats. Our rough estimates of tRNA SINE copies per haploid genome were much higher than published ones. Our results also revealed a distinct juxtaposition of AG and A-rich repeats and tRNA(Lys)-derived SINEs suggesting their coevolution. Both microsatellites arose repeatedly in two regions of the insterspersed repeat. Moreover, microsatellites associated with tRNA(Lys)-derived SINEs showed the highest complexity and less potential instability. CONCLUSION: Our results suggest that tRNA(Lys)-derived SINEs are a significant source for microsatellite generation in carnivores, especially for AG and A-rich repeat motifs. These observations indicate two modes of microsatellite generation: the expansion and variation of pre-existing tandem repeats and the conversion of sequences with high cryptic simplicity into a repeat array; mechanisms which are not specific to tRNA(Lys)-derived SINEs. Microsatellite and interspersed repeat coevolution could also explain different distribution of repeat types among and within species genomes. Finally, due to their higher complexity and lower potential informative content of microsatellites associated with tRNA(Lys)-derived SINEs, we recommend avoiding their use as genetic markers

    Interplay between SIN3A and STAT3 Mediates Chromatin Conformational Changes and GFAP Expression during Cellular Differentiation

    Get PDF
    BACKGROUND: Neurons and astrocytes are generated from common neural precursors, yet neurogenesis precedes astrocyte formation during embryogenesis. The mechanisms of neural development underlying suppression and de-suppression of differentiation-related genes for cell fate specifications are not well understood. METHODOLOGY/PRINCIPAL FINDINGS: By using an in vitro system in which NTera-2 cells were induced to differentiate into an astrocyte-like lineage, we revealed a novel role for Sin3A in maintaining the suppression of GFAP in NTera-2 cells. Sin3A coupled with MeCP2 bound to the GFAP promoter and their occupancies were correlated with repression of GFAP transcription. The repression by Sin3A and MeCP2 may be an essential mechanism underlying the inhibition of cell differentiation. Upon commitment toward an astrocyte-like lineage, Sin3A- MeCP2 departed from the promoter and activated STAT3 simultaneously bound to the promoter and exon 1 of GFAP; meanwhile, olig2 was exported from nuclei to the cytoplasm. This suggested that a three-dimensional or higher-order structure was provoked by STAT3 binding between the promoter and proximal coding regions. STAT3 then recruited CBP/p300 to exon 1 and targeted the promoter for histone H3K9 and H3K14 acetylation. The CBP/p300-mediated histone modification further facilitates chromatin remodeling, thereby enhancing H3K4 trimethylation and recruitment of RNA polymerase II to activate GFAP gene transcription. CONCLUSIONS/SIGNIFICANCE: These results provide evidence that exchange of repressor and activator complexes and epigenetic modifications are critical strategies for cellular differentiation and lineage-specific gene expression

    Translocations affecting human immunoglobulin heavy chain locus

    Get PDF
    Translocations involving human immunoglobulin heavy chain (IGH) locus are implicated in different leukaemias and lymphomas, including multiple myeloma, mantle cell lymphoma, Burkitt’s lymphoma and diffuse large B cell lymphoma. We have analysed published data and identified eleven breakpoint cluster regions (bcr) related to these cancers within the IgH locus. These ~1 kbp bcrs are specific for one or several types of blood cancer. Our findings could help devise PCR-based assays to detect cancer-related translocations, to identify the mechanisms of translocations and to help in the research of potential translocation partners of the immunoglobulin locus at different stages of B-cell differentiation

    Cisplatin treatment of C6 rat glioma in vivo did not influence copy number alterations and growth pattern of tumor-derived resistant cells

    Get PDF
    Aim. To investigate whether the cisplatin treatment of C6 rat glioma in vivo impacts the copy number alterations (CNAs), proliferation and colony formation efficiency (CFE) of tumor-derived cisplatin-resistant cells. Methods. The glioma modeling was performed by means of intracerebral stereotactic implantation of rat glioma C6 cells into the striatum region of rats. The rats received 20 % dimethyl sulfoxide DMSO (C6R1) or cisplatin (C6R4CIS and C6R5CIS) injected intraperitoneally (5 mg/kg) three times per week. After 10 injections, gliomas were resected and the cells were cultured for in vitro analysis. CNAs were analyzed by array comparative genome hybridization, proliferation by direct cell counting in hemocytometer, CFE by soft agar assay. Results. No significant changes in the CNAs and CFE of cisplatin-treated rat glioma C6R4CIS and C6R5CIS cell lines were observed compared to the vehicle-treated control C6R1 cells. However, C6R5CIS but not C6R4CIS had a reduced proliferation. Interestingly, both cisplatin- and vehicle-treated brain-grown cells had a reduced proliferation and CFE in comparison to the parental C6 cells. Conclusions. Despite numerous reports on the destabilizing effects of cisplatin on genome and phenotype, the cisplatin treatment of C6 cells in vivo did not affect genome stability, CFE, and had an inconsistent effect on the proliferation in vitro. The rat brain microenvironment may potentially impact the growth characteristics of rat glioma cells
    corecore