1,642 research outputs found

    Transient chaos and resonant phase mixing in violent relaxation

    Full text link
    This paper explores how orbits in a galactic potential can be impacted by large amplitude time-dependences of the form that one might associate with galaxy or halo formation or strong encounters between pairs of galaxies. A period of time-dependence with a strong, possibly damped, oscillatory component can give rise to large amounts of transient chaos, and it is argued that chaotic phase mixing associated with this transient chaos could play a major role in accounting for the speed and efficiency of violent relaxation. Analysis of simple toy models involving time-dependent perturbations of an integrable Plummer potential indicates that this chaos results from a broad, possibly generic, resonance between the frequencies of the orbits and harmonics thereof and the frequencies of the time-dependent perturbation. Numerical computations of orbits in potentials exhibiting damped oscillations suggest that, within a period of 10 dynamical times t_D or so, one could achieve simultaneously both `near-complete' chaotic phase mixing and a nearly time-independent, integrable end state.Comment: 11 pages and 12 figures: an extended version of the original manuscript, containing a modified title, one new figure, and approximately one page of additional text, to appear in Monthly Notices of the Royal Astronomical Societ

    Chirality and the origin of atmospheric humic-like substances

    Get PDF
    Aerosol water extracts and atmospheric humic-like substances (HULIS) obtained from PM2.5-fraction aerosol samples collected in a rural/continental background environment and in an urban environment in spring and summer, and at a tropical site that was heavily impacted by biomass burning were studied. HULIS was obtained as the water-soluble, methanol-elutable material isolated from a solid-phase extraction procedure. The mean organic matter-to-organic carbon mass conversion factor and the standard deviation of 2.04 +/- 0.06 were derived for HULIS from biomass burning. Mean atmospheric concentrations of HULIS for the rural and urban environments and for the biomass burning during daylight periods and nights, were 1.65, 2.2, 43, and 60 mu gm(-3), respectively. This and other abundances indicate that intense emission sources and/or formation mechanisms of HULIS operate in biomass burning. Mean contributions of C in HULIS (HULIS-C) to water-soluble organic carbon (WSOC) were 35, 48, 63, and 76%, respectively, for the sample set listed. HULIS-C is the major component of the WSOC in tropical biomass burning. The data also suggest that HULIS most likely do not share common origin in the three environments studied. Differentiation among the possible formation processes was attempted by investigating the optical activity of HULIS through their (electronic and vibrational) circular dichroism properties. The urban HULIS did not show optical activity, which is in line with the concept of their major airborne formation from anthropogenic aromatics. The rural HULIS revealed weak optical activity, which may be associated with one of their important formation pathways by photo-oxidation and oligomerisation, i.e., with the formation from chiral biogenic precursors with one of the enantiomers slightly enriched. The The biomass burning of HULIS exhibited a strong effect in the vibrational circular dichroism as a clear distinction from the other two types. This was related to the contribution of the thermal degradation products of lignins and cellulose. The biomass burning of HULIS resemble Suwannee River Fulvic Acid standard more closely in some aspects than the urban and rural types of HULIS, which may be related to their common origin from plant material

    Generation of a stable low-frequency squeezed vacuum field with periodically-poled KTiOPO4_4 at 1064 nm

    Get PDF
    We report on the generation of a stable continuous-wave low-frequency squeezed vacuum field with a squeezing level of 3.8±0.13.8\pm0.1 dB at 1064 nm, the wavelength at which laser interferometers for gravitational wave (GW) detection operate, using periodically poled KTiOPO4_4 (PPKTP) in a sub-threshold optical parametric oscillator. PPKTP has the advantages of higher nonlinearity, smaller intra-crystal and pump-induced seed absorption, user-specified parametric down-conversion temperature, wider temperature tuning range, and lower susceptibility to thermal lensing over alternative nonlinear materials such as MgO doped or periodically poled LiNbO3_3, and is, therefore, an excellent material for generation of squeezed vacuum fields for application to laser interferometers for GW detection

    Structure analysis of proteins, peptides and metal complexes by vibrational circular dichroism

    Get PDF
    There are two principal forms of vibrational optical activity (VOA), an IR form referred to as vibrational circular dichroism (VCD) and Raman form known as Raman optical activity (ROA). This paper reports examples of the application of VCD spectroscopy for the determination of the absolute configuration and conformation of chiral molecules, e. g. cyclic beta-lactams. VCD spectroscopy can be applied for the characterization of the conformation of proteins and peptides in solution. VCD based conformational analysis of cyclic peptides is discussed. Examples are the cyclic hexapeptide cyclo(Pro(2)-Gly-Pro(2)-Gly) and cyclic peptides comprising beta-homoamino acids (trans-2-aminocyclopentane or trans-2-aminocyclohexane carboxylic acid). Structure analysis by VCD of opiate peptides, glycopeptides, peptidomimetics and chiral transition metal complexes are also discussed

    The role of carbon species in heterogeneous catalytic processes: an in situ soft x-ray photoelectron spectroscopy study

    Get PDF
    High pressure X-ray photoelectron spectroscopy (XPS) is used to characterize heterogeneous catalytic processes. The success of the new technique based on the possibility to correlate the catalytic activity and the electronic structure of an active surface. The dynamic character of a catalyst surface can be demonstrated impressively by this technique. In this contribution the basics of high pressure XPS will be discussed. Three examples of heterogeneous catalytic reactions are presented in this contribution. The selective hydrogenation of 1-pentyne over Pd based catalysts and the dehydrogenation of n-butane and the oxidation of ethylene over V based catalysts. It is shown, that the formation of subsurface carbons plays an important role in all the examples. The incorporated carbon changes the electronic structure of the surface and so controls the selectivity of the reaction. A change of the educts in the reaction atmosphere induces modifications of the electronic surface structure of the operation catalysts
    • …
    corecore