11 research outputs found

    Mehanizam toksičnosti i detoksikacije organofosfornih spojeva s naglaskom na istraživanja u Hrvatskoj

    Get PDF
    This review comprises studies on the mechanisms of toxicity and detoxication of organophosphorus (OP) compounds done in Croatia in different research areas. One area is the synthesis of antidotes against OP poisoning and their in vivo testing in experimental animals. In vitro studies included in this review focus on the mechanisms of reversible inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), protection of cholinesterases from inhibition by OPs, and reactivation of phosphylated cholinesterases. The third area comprises distribution profiles of BChE and paraoxonase (PON) phenotypes in selected population groups and the detection of OPs and metabolites in humans. Finally, methods are described for the detection of OP compounds in human blood and other media by means of cholinesterase inhibitionPrikazana su istraživanja vođena u Hrvatskoj na različitim područjima mehanizma toksičnosti i detoksikacije organofosfornih (OP) spojeva. Jedno je područje sinteza antidota protiv otrovanja OP spojevima i testiranje in vivo antidota na eksperimentalnim životinjama. Istraživanja in vitro odnose se na mehanizam reverzibilne inhibicije acetilkolinesteraze (AChE) i buturilkolinesteraze (BChE), zaštitu kolinesteraza od inhibicije OP spojevima te reaktivaciju fosfiliranih kolinesteraza. Treće je područje distribucija fenotipova BChE i paraoksonaze (PON) u odabranim populacijama te detekcija OP spojeva i njihovih metabolita u ljudima. Na kraju su opisane metode detekcije OP spojeva u ljudskoj krvi i drugim medijima koje se osnivaju na inhibiciji kolinesteraza

    Theory of Two-Dimensional Josephson Arrays in a Resonant Cavity

    Full text link
    We consider the dynamics of a two-dimensional array of underdamped Josephson junctions placed in a single-mode resonant cavity. Starting from a well-defined model Hamiltonian, which includes the effects of driving current and dissipative coupling to a heat bath, we write down the Heisenberg equations of motion for the variables of the Josephson junction and the cavity mode, extending our previous one-dimensional model. In the limit of large numbers of photons, these equations can be expressed as coupled differential equations and can be solved numerically. The numerical results show many features similar to experiment. These include (i) self-induced resonant steps (SIRS's) at voltages V = (n hbar Omega)/(2e), where Omega is the cavity frequency, and n is generally an integer; (ii) a threshold number N_c of active rows of junctions above which the array is coherent; and (iii) a time-averaged cavity energy which is quadratic in the number of active junctions, when the array is above threshold. Some differences between the observed and calculated threshold behavior are also observed in the simulations and discussed. In two dimensions, we find a conspicuous polarization effect: if the cavity mode is polarized perpendicular to the direction of current injection in a square array, it does not couple to the array and there is no power radiated into the cavity. We speculate that the perpendicular polarization would couple to the array, in the presence of magnetic-field-induced frustration. Finally, when the array is biased on a SIRS, then, for given junction parameters, the power radiated into the array is found to vary as the square of the number of active junctions, consistent with expectations for a coherent radiation.Comment: 11 pages, 8 eps figures, submitted to Phys. Rev

    Conservation laws in the teleparallel theory of gravity

    Get PDF
    We study the conservation laws associated with the asymptotic Poincare symmetry of spacetime in the general teleparallel theory of gravity. Demanding that the canonical Poincare generators have well defined functional derivatives in a properly defined phase space, we obtain the improved form of the generators, containing certain surface terms. These terms are shown to represent the values of the related conserved charges: energy-momentum and angular momentum.Comment: 22 pages, RevTex, discussion of the angular momentum of the Dirac source solution corrected, twelve references adde

    Incorporating Ecosystems in the Water-Energy-Food Nexus: Current Perspective and Future Directions

    Get PDF
    Integrated approaches for managing natural resources are needed to meet the increasing demand for freshwater, energy and food, while, in parallel, mitigating and adapting to climate change, maintaining the integrity of ecosystems, and ensuring equitable access to resources. The Water-Energy-Food (WEF) Nexus has been proposed as a cross-sectoral approach to understand, analyse, and manage the complex trade-offs and exploit synergies that arise among these resource sectors. Although not initially included as a component of the Nexus, the importance of ecosystems in supporting water, energy and food security is increasingly recognised by the Nexus community of researchers and practitioners. However, attempts to conceptually integrate Ecosystems into the Nexus have yet to converge into a common framework. A group of natural resources management researchers, system thinkers and ecosystem services experts from the European network COST Action CA20138 NEXUSNET have compiled and investigated the various approaches for integrating ecosystems in the WEF Nexus. By combining literature analysis with interdisciplinary workshops – one of which was held in a hybrid format (in person and online) at the University of Oulu, Finland, in September 2022 – we reveal a multiplicity of concepts utilised to represent, partially or fully, ecosystems in the Nexus, namely “natural environment”, “ecosystem services” and “biodiversity”. Disparity was also found in the role attributed to ecosystems in the Nexus framework, being it an underlying layer from which resources for Nexus sectors are extracted or the pillar of an expanded Nexus system – i.e., the WEF-Ecosystems Nexus. Through this collaborative effort, we present possible advantages and disadvantages of adopting differential WEF-Ecosystems Nexus approaches, highlighting their potential complementarity and integration to support future advancement of Nexus research. In the oral presentation, we will show our preliminary findings and encourage the exchange of ideas and feedback from the different scientific disciplines present at the CEMEPE Conference.Tenth International Conference on Environmental Management, Engineering, Planning and Economics (CEMEPE) & SECOTOX Conference organized by: Division of Hydraulics and Environmental Engineering, Department of Civil Engineering, Aristotle University of Thessaloniki and Society of Ecotoxicology and Environmental Safety (SECOTOX), Skiathos island, Greece, 2023

    Configuring of a virtual refonfigurable 2-axis paralel kinematic machine integrated with the open arhitecture CNC system based on EMC2 software

    No full text
    The paper presents the concepts of a reconfigurable 2 axis parallel kinematic machine that is controled using the PC Linux CNC system EMC2. In this paper given the methodology for configuring a virtual machine tool that integrates with the control system and which is also reconfigurable. Verification of the methodology was achieved by plotting the programmed contour test, on various types and subvariants of the machine, on configured virtual and real machines

    Photocatalytic performance of TiO2/zeolites under simulated solar light for removal of atenolol from aqueous solution

    No full text
    Removal of the β-blocker atenolol from an aqueous solution was studied using TiO2/zeolites, prepared by a simple and cost-effective solid-state dispersion method. Synthetic zeolites 13X and ZSM-5 (Si/Al = 40) and natural zeolite clinoptilolite were used as one component of the hybrid materials, whereas TiO2 nanocrystals obtained from TiO2 nanotubes and P25 TiO2 nanoparticles were used as the other. The synthesized materials were characterized by X-ray powder diffraction, transmission electron microscopy, Fourier transformed infrared spectroscopy, ultraviolet–visible diffuse reflectance spectroscopy and scanning electron microscopy with energy-dispersive spectroscopy. The photocatalytic activity for the degradation of atenolol was investigated under simulated solar light. Additionally, the effect of initial pH on atenolol removal and the reusability of prepared catalysts were tested. The best loading of TiO2 was 20 wt% over all investigated zeolites. The degradation of atenolol followed the pseudo-first-order kinetics. The photocatalytic degradation of atenolol after 70 min of irradiation was ~ 50% for TiO2/13X materials, ~ 45% for clinoptilolite combined with P25 TiO2 and ~ 57% for clinoptilolite combined with TiO2 nanocrystals obtained from TiO2 nanotubes. The results showed the highest removal efficiency after 70 min of irradiation for ZSM-5 combined with P25 TiO2 (~ 94%), followed by ZSM-5 combined with TiO2 nanocrystals obtained from TiO2 nanotubes (~ 88%) at near-neutral pH (~ 6.5). The total removal of atenolol from an aqueous solution for TiO2/ZSM-5 materials resulted from two processes: adsorption and photocatalytic degradation. The TiO2/ZSM-5 photocatalysts can be easily recovered and reused as their activity was preserved after four cycles

    Activation of Osmium by the Surface Effects of Hydrogenated TiO2 Nanotube Arrays for Enhanced Hydrogen Evolution Reaction Performance

    No full text
    Efficient cathodes for the hydrogen evolution reaction (HER) in acidic water electrolysis rely on the use of expensive platinum group metals (PGMs). However, to achieve economically viable operation, both the content of PGMs must be reduced and their intrinsically strong H adsorption mitigated. Herein, we show that the surface effects of hydrogenated TiO2 nanotube (TNT) arrays can make osmium, a so far less-explored PGM, a highly active HER electrocatalyst. These defect-rich TiO2 nanostructures provide an interactive scaffold for the galvanic deposition of Os particles with modulated adsorption properties. Through systematic investigations, we identify the synthesis conditions (OsCl3 concentration/temperature/reaction time) that yield a progressive improvement in Os deposition rate and mass loading, thereby decreasing the HER overpotential. At the same time, the Os particles deposited by this procedure remain mainly sub-nanometric and entirely cover the inner tube walls. An optimally balanced Os@TNT composite prepared at 3 mM/55 °C/30 min exhibits a record low overpotential (η) of 61 mV at a current density of 100 mA cm-2, a high mass activity of 20.8 A mgOs-1 at 80 mV, and a stable performance in an acidic medium. Density functional theory calculations indicate the existence of strong interactions between the hydrogenated TiO2 surface and small Os clusters, which may weaken the Os-H* binding strength and thus boost the intrinsic HER activity of Os centers. The results presented in this study offer new directions for the fabrication of cost-effective PGM-based catalysts and a better understanding of the synergistic electronic interactions at the PGM|TiO2 interface
    corecore