1,499 research outputs found
Incidental Lymphoplasmacytic Lymphoma Diagnosed Following Robotic-Assisted Laparoscopic Prostatectomy for Prostate Cancer
© 2019 The Author(s). This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission.We report a case of prostatic lymphoma of the Walden-ström's macroglobulinemia subtype in a 64-year-old gentleman who underwent a robotic-assisted laparoscopic prostatectomy following lower urinary tract symptoms and high grade adenocarcinoma on transperineal prostate biopsy's. Histopathological and immunohistochemistry analysis at the time of surgery was consistent with a CD5-negative small B-cell lymphoma. To our knowledge this is the first reported prostatic lymphoma identified following robotic-assisted laparoscopic prostatectomy and the first documented case of lymphoplasmacytic lymphoma involving prostate. Lymphoma of the prostate is an uncommon entity in surgical practice and their diagnosis often poses considerable difficulty as they often mimic carcinoma. We discuss this rare diagnosis and review the literature for current considerations and prognosis.Peer reviewedFinal Published versio
Prevalence of haptic feedback in robot-mediated surgery : a systematic review of literature
© 2017 Springer-Verlag. This is a post-peer-review, pre-copyedit version of an article published in Journal of Robotic Surgery. The final authenticated version is available online at: https://doi.org/10.1007/s11701-017-0763-4With the successful uptake and inclusion of robotic systems in minimally invasive surgery and with the increasing application of robotic surgery (RS) in numerous surgical specialities worldwide, there is now a need to develop and enhance the technology further. One such improvement is the implementation and amalgamation of haptic feedback technology into RS which will permit the operating surgeon on the console to receive haptic information on the type of tissue being operated on. The main advantage of using this is to allow the operating surgeon to feel and control the amount of force applied to different tissues during surgery thus minimising the risk of tissue damage due to both the direct and indirect effects of excessive tissue force or tension being applied during RS. We performed a two-rater systematic review to identify the latest developments and potential avenues of improving technology in the application and implementation of haptic feedback technology to the operating surgeon on the console during RS. This review provides a summary of technological enhancements in RS, considering different stages of work, from proof of concept to cadaver tissue testing, surgery in animals, and finally real implementation in surgical practice. We identify that at the time of this review, while there is a unanimous agreement regarding need for haptic and tactile feedback, there are no solutions or products available that address this need. There is a scope and need for new developments in haptic augmentation for robot-mediated surgery with the aim of improving patient care and robotic surgical technology further.Peer reviewe
Detection rates of recurrent prostate cancer : 68Gallium (Ga)-labelled prostate-specific membrane antigen versus choline PET/CT scans. A systematic review
Background: The aim of this work was to assess the use of prostate-specific membrane antigen (PSMA)-labelled radiotracers in detecting the recurrence of prostate cancer. PSMA is thought to have higher detection rates when utilized in positron emission tomography (PET)/computed tomography (CT) scans, particularly at lower prostate-specific antigen (PSA) levels, compared with choline-based scans. Methods: A systematic review was conducted comparing choline and PSMA PET/CT scans in patients with recurrent prostate cancer following an initial curative attempt. The primary outcomes were overall detection rates, detection rates at low PSA thresholds, difference in detection rates and exclusive detection rates on a per-person analysis. Secondary outcome measures were total number of lesions, exclusive detection by each scan on a per-lesion basis and adverse side effects. Results: Overall detection rates were 79.8% for PSMA and 66.7% for choline. There was a statistically significant difference in detection rates favouring PSMA [OR (M–H, random, 95% confidence interval (CI)) 2.27 (1.06, 4.85), p = 0.04]. Direct comparison was limited to PSA < 2 ng/ml in two studies, with no statistically significant difference in detection rates between the scans [OR (M–H, random, 95% CI) 2.37 (0.61, 9.17) p = 0.21]. The difference in detection on the per-patient analysis was significantly higher in the PSMA scans (p < 0.00001). All three studies reported higher lymph node, bone metastasis and locoregional recurrence rates in PSMA. Conclusions: PSMA PET/CT has a better performance compared with choline PET/CT in detecting recurrent disease both on per-patient and per-lesion analysis and should be the imaging modality of choice while deciding on salvage and nonsystematic metastasis-directed therapy strategies.Peer reviewedFinal Published versio
Generation of strain-induced pseudo-magnetic field in a doped type-II Weyl semimetal
In Weyl semimetals, there is an intriguing possibility of realizing a
pseudo-magnetic field in presence of small strain due to certain special cases
of static deformations. This pseudo-magnetic field can be large enough to form
quantized Landau levels and thus become observable in Weyl semimetals. In this
paper, we experimentally show the emergence of a pseudo-magnetic field (~ 3
Tesla) by Scanning Tunneling Spectroscopy (STS) on the doped Weyl semimetal
Re-MoTe2, where distinct Landau level oscillations in the tunneling conductance
are clearly resolved. The crystal lattice is intrinsically strained where large
area STM imaging of the surface reveals differently strained domains where
atomic scale deformations exist forming topographic ripples with varying
periodicity in the real space. The effect of pseudo-magnetic field is clearly
resolved in areas under maximum strain.Comment: 6 pages, 4 figure
Discovery of highly spin-polarized conducting surface states in the strong spin-orbit coupling semiconductor SbSe
Majority of the AB type chalcogenide systems with strong spin-orbit
coupling, like BiSe, BiTe and SbTe etc., are
topological insulators. One important exception is SbSe, where a
topological non-trivial phase was argued to be possible under ambient
conditions, but such a phase could be detected to exist only under pressure. In
this Letter, we show that like BiSe, SbSe, displays generation
of highly spin-polarized current under mesoscopic superconducting point
contacts as measured by point contact Andreev reflection spectroscopy. In
addition, we observe a large negative and anisotropic magnetoresistance in
SbSe, when the field is rotated in the basal plane. However, unlike in
BiSe, in case of SbSe a prominent quasiparticle interference
(QPI) pattern around the defects could be obtained in STM conductance imaging.
Thus, our experiments indicate that SbSe is a regular band insulator
under ambient conditions, but due to it's high spin-orbit coupling, non-trivial
spin-texture exists on the surface and the system could be on the verge of a
topological insulator phase.Comment: 5 pages, 4 figures, supplemental material not include
11CO2 Fixation: A Renaissance in PET Radiochemistry
Carbon-11 labelled carbon dioxide is the cyclotron-generated feedstock reagent for most positron emission tomography (PET) tracers using this radionuclide. Most carbon-11 labels, however, are installed using derivative reagents generated from [11C]CO2. In recent years, [11C]CO2 has seen a revival in applications for the direct incorporation of carbon-11 into functional groups such as ureas, carbamates, oxazolidinones, carboxylic acids, esters, and amides. This review summarizes classical [11C]CO2 fixation strategies using organometallic reagents and then focuses on newly developed methods that employ strong organic bases to reversibly capture [11C]CO2 into solution, thereby enabling highly functionalized labelled compounds to be prepared. Labelled compounds and radiopharmaceuticals that have been translated to the clinic are highlighted.Chemistry and Chemical Biolog
Towards the development of new subtype-specific muscarinic receptor radiopharmaceuticals-radiosynthesis and ex vivo biodistribution of [18F] 3-(4-(2-(2-(2-fluoroethoxy) ethoxy) ethylthio)-1, 2, 5-thiadiazol-3-yl)-1-methyl-1, 2, 5, 6-tetrahydropyridine
Muscarinic receptors have been implicated in neurological disorders including Alzheimer’s disease, Parkinson’s disease, and schizophrenia. Nineteen derivatives of thiadiazolyltetrahydropyridine (TZTP), a core that has previously shown high affinities towards muscarinic receptor subtypes, were synthesized and evaluated via in vitro binding assays. The title compound, a fluoro-polyethyleneglycol analog of TZTP (4c), was subsequently labelled with fluorine-18. Fluorine-18-labelled 4c was produced, via an automated synthesis, in an average radiochemical yield of 36% (uncorrected for decay), with high radiochemical purity (>99%) and high specific activity (326 GBq/µmol; end-of-bombardment), within 40 min (n = 3). Ex vivo biodistribution studies following tail-vein injection of [18F]4c in conscious rats displayed sufficient brain uptake (0.4%–0.7% injected dose / gram of wet tissue in all brain regions at 5 min post injection); however, there were substantial polar metabolites present in the brain, thereby precluding future use of [18F]4c for imaging in the central nervous system.peer-reviewe
(E)-2-(2-Methylcyclohexylidene)hydrazinecarbothioamide
In the crystal of the title compound, C8H15N3S, molecules are linked by N—H⋯S hydrogen bonds, forming chains along [10]. An intramolecular N—H⋯N hydrogen bond is also present
The future of robotic surgery
© 2018 Royal College of Surgeons.For 20 years Intuitive Surgical’s da Vinci® system has held the monopoly in minimally invasive robotic surgery. Restrictive patenting, a well-developed marketing strategy and a high-quality product have protected the company’s leading market share.1 However, owing to the nuances of US patenting law, many of Intuitive Surgical’s earliest patents will be expiring in the next couple of years. With such a shift in backdrop, many of Intuitive Surgical’s competitors (from medical and industrial robotic backgrounds) have initiated robotic programmes – some of which are available for clinical use now. The next section of the review will focus on new and developing robotic systems in the field of minimally invasive surgery (Table 1), single-site surgery (Table 2), natural orifice transluminal endoscopic surgery (NOTES) and non-minimally invasive robotic systems (Table 3).Peer reviewedFinal Published versio
- …
