341 research outputs found

    Cloning of rice DNA and identification of transfer-RNA gene clones

    Get PDF
    DNA from 48 hr germinated rice embroys was cut with restriction endonuclease Bam H1 and cloned to the Bam site on plasmid pBR 322. The clone containing recombinant DNA were selected by their sensitivity to tetracycline and resistance to ampicillin. Using 32P-;abelled rice embryo tRNA as a probe two clone were identified to contain tRNA genes by colony hybridization

    The global energy balance of Titan

    Get PDF
    The global energy budget of planets and their moons is a critical factor to influence the climate change on these objects. Here we report the first measurement of the global emitted power of Titan. Long-term (2004–2010) observations conducted by the Composite Infrared Spectrometer (CIRS) onboard Cassini reveal that the total emitted power by Titan is (2.84 ± 0.01) × 10^(14) watts. Together with previous measurements of the global absorbed solar power of Titan, the CIRS measurements indicate that the global energy budget of Titan is in equilibrium within measurement error. The uncertainty in the absorbed solar energy places an upper limit on the energy imbalance of 6.0%

    Mars Atmospheric Escape Recorded by H, C and O Isotope Ratios in Carbon Dioxide and Water Measured by the Sam Tunable Laser Spectrometer on the Curiosity Rover

    Get PDF
    Stable isotope ratios in C, H, N, O and S are powerful indicators of a wide variety of planetary geophysical processes that can identify origin, transport, temperature history, radiation exposure, atmospheric escape, environmental habitability and biological activity [2]. For Mars, measurements to date have indicated enrichment in all the heavier isotopes consistent with atmospheric escape processes, but with uncertainty too high to tie the results with the more precise isotopic ratios achieved from SNC meteoritic analyses. We will present results to date of H, C and O isotope ratios in CO2 and H2O made to high precision (few per mil) using the Tunable Laser Spectrometer (TLS) that is part of the Sample Analysis at Mars (SAM) instrument suite on MSL s Curiosity Rover

    Interactions in vivo between the Vif protein of HIV-1 and the precursor (Pr55GAG) of the virion nucleocapsid proteins

    Get PDF
    The abnormality of viral core structure seen in vif-defective HIV-1 grown in PBMCs has suggested a role for Vif in viral morphogenesis. Using an in vivo mammalian two-hybrid assay, the interaction between Vif and the precursor (Pr55GAG) of the virion nucleocapsid proteins has been analysed. This revealed the amino-terminal (aa 1–22) and central (aa 70–100) regions of Vif to be essential for its interaction with Pr55GAG, but deletion of the carboxy-terminal (aa 158–192) region of the protein had only a minor effect on its interaction. Initial deletion studies carried out on Pr55GAG showed that a 35-amino-acid region of the protein bridging the MA(p17)–CA(p24) junction was essential for its ability to interact with Vif. Site-directed mutagenesis of a conserved tryptophan (Trp21) near the amino terminus of Vif showed it to be important for the interaction with Pr55GAG. By contrast, mutagenesis of the highly conserved YLAL residues forming part of the BC-box motif, shown to be important in Vif promoting degradation of APOBEC3G/3F, had little or no effect on the Vif–Pr55GAG interaction

    Vortices in Saturn's Northern Hemisphere (2008-2015) observed by Cassini ISS

    Get PDF
    We use observations from the Imaging Science Subsystem on Cassini to create maps of Saturn's Northern Hemisphere (NH) from 2008 to 2015, a time period including a seasonal transition (i.e., spring equinox in 2009) and the 2010 giant storm. The processed maps are used to investigate vortices in the NH during the period of 2008–2015. All recorded vortices have diameters (east‐west) smaller than 6000 km except for the largest vortex that developed from the 2010 giant storm. The largest vortex decreased its diameter from ~11,000 km in 2011 to ~5000 km in 2015, and its average diameter is ~6500 km during the period of 2011–2015. The largest vortex lasts at least 4 years, which is much longer than the lifetimes of most vortices (less than 1 year). The largest vortex drifts to north, which can be explained by the beta drift effect. The number of vortices displays varying behaviors in the meridional direction, in which the 2010 giant storm significantly affects the generation and development of vortices in the middle latitudes (25–45°N). In the higher latitudes (45–90°N), the number of vortices also displays strong temporal variations. The solar flux and the internal heat do not directly contribute to the vortex activities, leaving the temporal variations of vortices in the higher latitudes (45–90°N) unexplained

    Glen Torridon Mineralogy and the Sedimentary History of the Clay Mineral Bearing Unit

    Get PDF
    Clay minerals are common in ancient terrains on Mars and their presence at the surface alludes to aqueous processes in the Noachian to Early Hesperian (>3.5 Ga). Gale crater was selected as Curiositys landing site largely because of the identification of clay mineral rich strata from orbit. On Earth, the types of clay minerals (i.e., smectites) identified in Gale crater are typically juvenile weathering products that ultimately record the interaction between primary igneous minerals with the hydrosphere, atmosphere, and biosphere. Trioctahedral and dioctahedral smectite were identified by Curiosity in units stratigraphically below the Clay Mineral-Bearing Unit (CBU) identified from orbit. Compositional and sedimentological data suggest the smectite formed via authigenesis in a lake environment and may have been altered during early diagenesis. The CBU is stratigraphically equivalent to a hematite-rich unit to the north and stratigraphically underlies sulfate-rich units to the south, suggesting a dynamic environment and evolving history of water in the ancient Gale crater lake. Targeting these clay mineral rich areas on Mars with rover missions provides an opportunity to explore the aqueous and sedimentary history of the planet

    Design of a Customized Neck Orthosis for FDM Manufacturing with a New Sustainable Bio-composite

    Get PDF
    The interest in developing customized external orthopaedic devices, thanks to the advent of Additive Manufacturing (AM), has grown in recent years. Greater attention was focused on upper limb casts, while applications to other body’s parts, such as the neck, were less investigated. In this paper the computer aided design (CAD) modelling, assessment and 3D printing with fused deposition modelling (FDM) of a customized neck orthosis are reported. The modelling, based on anatomic data of a volunteer subject, was aimed to obtain a lightweight, ventilated, hygienic and comfortable orthosis compared to the produced medical devices generally used for neck injuries. CAD models with different geometrical patterns, introduced for lightening and improving breathability, were considered, specifically, a honeycomb pattern and an elliptical holes pattern. These models were structurally assessed by means of finite elements analysis (FEA). Furthermore, an innovative composite material was considered for 3D printing. The material, Hemp Bio-Plastic® (HBP), composed by polylactic acid (PLA) and hemp shives, offers different advantages including lightweight, improved superficial finish and antibacterial properties. The results obtained in terms of design methodology and manufacturing by 3D printing of a prototype have shown the feasibility to develop customized cervical orthoses, with potentially improved performance with respect to cervical collars available on the market also thanks to the use of the innovative composite material

    Calibration and performance of the Galileo solid-state imaging system in Jupiter orbit

    Get PDF
    The solid-state imaging subsystem (SSI) on the National Aeronautics and Space Administration’s (NASA’s) Galileo Jupiter orbiter spacecraft has successfully completed its 2-yr primary mission exploring the Jovian system. The SSI has remained in remarkably stable calibration during the 8-yr flight, and the quality of the returned images is exceptional. Absolute spectral radiometric calibration has been determined to 4 to 6% across its eight spectral filters. Software and calibration files are available to enable radiometric, geometric, modulation transfer function (MTF), and scattered light image calibration. The charge-coupled device (CCD) detector endured the harsh radiation environment at Jupiter without significant damage and exhibited transient image noise effects at about the expected levels. A lossy integer cosine transform (ICT) data compressor proved essential to achieving the SSI science objectives given the low data transmission rate available from Jupiter due to a communication antenna failure. The ICT compressor does introduce certain artifacts in the images that must be controlled to acceptable levels by judicious choice of compression control parameter settings. The SSI team’s expertise in using the compressor improved throughout the orbital operations phase and, coupled with a strategy using multiple playback passes of the spacecraft tape recorder, resulted in the successful return of 1645 unique images of Jupiter and its satellites

    The Surface Energy Budget at Gale Crater During the First 2500 Sols of the Mars Science Laboratory Mission

    Get PDF
    We use in situ environmental measurements by the Mars Science Laboratory (MSL) mission to obtain the surface energy budget (SEB) across Curiosity's traverse during the first 2500 sols of the mission. This includes values of the downwelling shortwave solar radiation, the upwelling solar radiation reflected by the surface, the downwelling longwave radiation from the atmosphere, the upwelling longwave radiation emitted by the surface, the sensible heat flux associated with turbulent motions, and the latent heat flux associated with water phase changes. We then analyze their temporal variation on different timescales and relate this to the mechanisms causing these variations. Through its Rover Environmental Monitoring Station, MSL allows for a more accurate determination of the SEB than its predecessors on Mars. Moreover, the unprecedented duration, cadence, and frequency of MSL environmental observations allow for analyses of the SEB from diurnal to interannual timescales. The results presented in this article can be used to evaluate the consistency with predictions from atmospheric numerical models, to validate aerosol radiative properties under a range of dust conditions, to understand the energy available for solar-powered missions, and to enable comparisons with measurements of the SEB by the Perseverance rover at Jezero crater.Peer reviewe
    corecore