14 research outputs found

    COMPACT LEFT-HANDED DUAL-BAND FILTERS BASED ON SHUNDTED STUB RESONATORS

    Get PDF
    In this paper, super-compact microstrip dual-band resonator is presented, designed using the superposition of two simple left-handed (LH) resonators with single shunt stub. The proposed resonator exhibits spurious response in wide frequency range and therefore allows construction of dual-band filters using the superposition principle. The equivalent circuit model of the proposed resonator is crated and the influence of different geometrical parameters to the performances of the resonator are analyzed in details. As an examples, two dual-band filters that operate simultaneously at the WiMAX frequency bands are designed

    Microfluidic EBG Sensor Based on Phase-Shift Method Realized Using 3D Printing Technology

    Get PDF
    In this article, we propose a novel microfluidic microstrip electromagnetic band gap (EBG) sensor realized using cost-effective 3D printing technology. Microstrip sensor allows monitoring of the fluid properties flowing in the microchannel embedded between the microstrip line and ground plane. The sensor’s operating principle is based on the phase-shift method, which allows the characterization at a single operating frequency of 6 GHz. The defected electromagnetic band gap (EBG) structure is realized as a pattern in the microstrip ground plane to improve sensor sensitivity. The designed microfluidic channel is fabricated using a fused deposition modelling (FDM) 3D printing process without additional supporting layers, while the conductive layers are realized using sticky aluminium tape. The measurement results show that the change of permittivity of the fluid in the microfluidic channel from 1 to 80 results in the phase-shift difference of almost 90°. The potential application is demonstrated through the implementation of a proposed sensor for the detection of toluene concentration in toluene–methanol mixture where various concentrations of toluene were analysed

    Phase-Shift Transmission Line Method for Permittivity Measurement and Its Potential in Sensor Applications

    Get PDF
    This chapter offers a detailed insight into a dielectric characterization of the materials based on the phase-shift measurements of the transmission signal. The chapter will provide in-depth theoretical background of the phase-shift transmission line measurement in the microstrip architecture and determination of dielectric permittivity of design under test for several measurement configurations. Potential of the phase-shift method will be demonstrated through applications in the characterization of an unknown dielectric constant in multilayered structure, realization of the soil moisture sensor, and sensor for determination of the dielectric constant of a fluid in microfluidic channel. Moreover, specific techniques for increasing the phase shift based on the electromagnetic bandgap structure, the aperture in the ground plane and the left-handed effect will be presented. In the end, the realization of simple in-field detection device for determination of permittivity based on the phase-shift measurement will be demonstrated

    Multiparameter Water Quality Monitoring System for Continuous Monitoring of Fresh Waters

    Full text link
    This paper presents an economical multiparameter water quality monitoring system for continuous monitoring of fresh waters. It is based on a sensor node that integrates turbidity, temperature, conductivity sensors, a miniature eighteen-channel spectrophotometer, and a sensor for the detection of thermotolerant coliforms, which is a major novelty of the system. Due to the influence of water impurities on the measurement of thermotolerant coliforms, a heuristic method has been developed to mitigate this effect. Moreover, the sensor is low-power and with an integrated LoRaWAN module, it comprises a system that is wireless sensor network (WSN) ready and can send data to a dedicated server. In addition, the system is submersible, capable of long-term field operation, and significantly cheaper in comparison to existing solutions. The purpose of the system is to give early warning of incidental pollution situations, thus enabling authorities to fast respond by taking a water sample for laboratory analysis for confirmation, analyze the source of contamination, and take action regarding further prevention of such occasions

    A Microwave Microfluidic Sensor Based on a Dual-Mode Resonator for Dual-Sensing Applications

    No full text
    In this paper, we propose a novel microwave microfluidic sensor with dual-sensing capability. The sensor is based on a dual-mode resonator that consists of a folded microstrip line loaded with interdigital lines and a stub at the plane of symmetry. Due to the specific configuration, the resonator exhibits two entirely independent resonant modes, which allows simultaneous sensing of two fluids using a resonance shift method. The sensor is designed in a multilayer configuration with the proposed resonator and two separated microfluidic channels—one intertwined with the interdigital lines and the other positioned below the stub. The circuit has been fabricated using low-temperature co-fired ceramics technology and its performance was verified through the measurement of its responses for different fluids in the microfluidic channels. The results confirm the dual-sensing capability with zero mutual influence as well as good overall performance. Besides an excellent potential for dual-sensing applications, the proposed sensor is a good candidate for application in mixing fluids and cell counting

    Novel Cost-Effective Microfluidic Chip Based on Hybrid Fabrication and Its Comprehensive Characterization

    No full text
    Microfluidics, one of the most attractive and fastest developed areas of modern science and technology, has found a number of applications in medicine, biology and chemistry. To address advanced designing challenges of the microfluidic devices, the research is mainly focused on development of efficient, low-cost and rapid fabrication technology with the wide range of applications. For the first time, this paper presents fabrication of microfluidic chips using hybrid fabrication technology—a grouping of the PVC (polyvinyl chloride) foils and the LTCC (Low Temperature Co-fired Ceramics) Ceram Tape using a combination of a cost-effective xurography technique and a laser micromachining process. Optical and dielectric properties were determined for the fabricated microfluidic chips. A mechanical characterization of the Ceram Tape, as a middle layer in its non-baked condition, has been performed and Young’s modulus and hardness were determined. The obtained results confirm a good potential of the proposed technology for rapid fabrication of low-cost microfluidic chips with high reliability and reproducibility. The conducted microfluidic tests demonstrated that presented microfluidic chips can resist 3000 times higher flow rates than the chips manufactured using standard xurography technique

    Microwave Spoof Surface Plasmon Polariton-Based Sensor for Ultrasensitive Detection of Liquid Analyte Dielectric Constant

    No full text
    In this paper, a microwave microfluidic sensor based on spoof surface plasmon polaritons (SSPPs) was proposed for ultrasensitive detection of dielectric constant. A novel unit cell for the SSPP structure is proposed and its behaviour and sensing potential analysed in detail. Based on the proposed cell, the SSPP microwave structure with a microfluidic reservoir is designed as a multilayer configuration to serve as a sensing platform for liquid analytes. The sensor is realized using a combination of rapid, cost-effective technologies of xurography, laser micromachining, and cold lamination bonding, and its potential is validated in the experiments with edible oil samples. The results demonstrate high sensitivity (850 MHz/epsilon unit) and excellent linearity (R2 = 0.9802) of the sensor, which, together with its low-cost and simple fabrication, make the proposed sensor an excellent candidate for the detection of small changes in the dielectric constant of edible oils and other liquid analytes

    In the frequency range between 1 kHz and 1 MHz

    No full text

    Advances in Nanomaterials-Based Electrochemical Biosensors for Foodborne Pathogen Detection

    Get PDF
    Electrochemical biosensors utilizing nanomaterials have received widespread attention in pathogen detection and monitoring. Here, the potential of different nanomaterials and electrochemical technologies is reviewed for the development of novel diagnostic devices for the detection of foodborne pathogens and their biomarkers. The overview covers basic electrochemical methods and means for electrode functionalization, utilization of nanomaterials that include quantum dots, gold, silver and magnetic nanoparticles, carbon nanomaterials (carbon and graphene quantum dots, carbon nanotubes, graphene and reduced graphene oxide, graphene nanoplatelets, laser-induced graphene), metal oxides (nanoparticles, 2D and 3D nanostructures) and other 2D nanomaterials. Moreover, the current and future landscape of synergic effects of nanocomposites combining different nanomaterials is provided to illustrate how the limitations of traditional technologies can be overcome to design rapid, ultrasensitive, specific and affordable biosensors. lt /p
    corecore