64 research outputs found
The Gut Microbiome Is Altered in a Letrozole-Induced Mouse Model of Polycystic Ovary Syndrome.
Women with polycystic ovary syndrome (PCOS) have reproductive and metabolic abnormalities that result in an increased risk of infertility, diabetes and cardiovascular disease. The large intestine contains a complex community of microorganisms (the gut microbiome) that is dysregulated in humans with obesity and type 2 diabetes. Using a letrozole-induced PCOS mouse model, we demonstrated significant diet-independent changes in the gut microbial community, suggesting that gut microbiome dysbiosis may also occur in PCOS women. Letrozole treatment was associated with a time-dependent shift in the gut microbiome and a substantial reduction in overall species and phylogenetic richness. Letrozole treatment also correlated with significant changes in the abundance of specific Bacteroidetes and Firmicutes previously implicated in other mouse models of metabolic disease in a time-dependent manner. Our results suggest that the hyperandrogenemia observed in PCOS may significantly alter the gut microbiome independently of diet
Letrozole treatment of pubertal female mice results in activational effects on reproduction, metabolism and the gut microbiome.
Polycystic ovary syndrome (PCOS) is a common endocrine disorder in reproductive-aged women that is comprised of two out of the following three features: hyperandrogenism, oligo- or amenorrhea, or polycystic ovaries. In addition to infertility, many women with PCOS have metabolic dysregulation that increases the risk of developing type 2 diabetes, hypertension, and non-alcoholic fatty liver disease. Changes in the gut microbiome are associated with PCOS and gut microbes may be involved in the pathology of this disorder. Since PCOS often manifests in the early reproductive years, puberty is considered to be a critical time period for the development of PCOS. Exposure to sex steroid hormones during development results in permanent, organizational effects, while activational effects are transient and require the continued presence of the hormone. Androgens exert organizational effects during prenatal or early post-natal development, but it is unclear whether androgen excess results in organizational or activational effects during puberty. We recently developed a letrozole-induced PCOS mouse model that recapitulates both reproductive and metabolic phenotypes of PCOS. In this study, we investigated whether letrozole treatment of pubertal female mice exerts organizational or activational effects on host physiology and the gut microbiome. Two months after letrozole removal, we observed recovery of reproductive and metabolic parameters, as well as diversity and composition of the gut microbiome, indicating that letrozole treatment of female mice during puberty resulted in predominantly activational effects. These results suggest that if exposure to excess androgens during puberty leads to the development of PCOS, reduction of androgen levels during this time may improve reproductive and metabolic phenotypes in women with PCOS. These results also imply that continuous letrozole exposure is required to model PCOS in pubertal female mice since letrozole exerts activational rather than organizational effects during puberty
Constitutively active FOXO1 diminishes activin induction of Fshb transcription in immortalized gonadotropes.
In the present study, we investigate whether the FOXO1 transcription factor modulates activin signaling in pituitary gonadotropes. Our studies show that overexpression of constitutively active FOXO1 decreases activin induction of murine Fshb gene expression in immortalized LβT2 cells. We demonstrate that FOXO1 suppression of activin induction maps to the -304/-95 region of the Fshb promoter containing multiple activin response elements and that the suppression requires the FOXO1 DNA-binding domain (DBD). FOXO1 binds weakly to the -125/-91 region of the Fshb promoter in a gel-shift assay. Since this region of the promoter contains a composite SMAD/FOXL2 binding element necessary for activin induction of Fshb transcription, it is possible that FOXO1 DNA binding interferes with SMAD and/or FOXL2 function. In addition, our studies demonstrate that FOXO1 directly interacts with SMAD3/4 but not SMAD2 in a FOXO1 DBD-dependent manner. Moreover, we show that SMAD3/4 induction of Fshb-luc and activin induction of a multimerized SMAD-binding element-luc are suppressed by FOXO1 in a DBD-dependent manner. These results suggest that FOXO1 binding to the proximal Fshb promoter as well as FOXO1 interaction with SMAD3/4 proteins may result in decreased activin induction of Fshb in gonadotropes
American Gut: an Open Platform for Citizen Science Microbiome Research
McDonald D, Hyde E, Debelius JW, et al. American Gut: an Open Platform for Citizen Science Microbiome Research. mSystems. 2018;3(3):e00031-18
Recommended from our members
Sex, Microbes, and Polycystic Ovary Syndrome
Recent studies have shown that sex and sex steroids influence the composition of the gut microbiome. These studies also indicate that steroid regulation of the gut microbiome may play a role in pathological situations of hormonal excess, such as PCOS. Indeed, studies demonstrated that PCOS is associated with decreased alpha diversity and changes in specific Bacteroidetes and Firmicutes, previously associated with metabolic dysregulation. These studies suggest that androgens may regulate the gut microbiome in females and that hyperandrogenism may be linked with a gut 'dysbiosis' in PCOS. Future mechanistic studies will be required to elucidate how sex steroids regulate the composition and function of the gut microbial community and what the consequences of this regulation are for the host
Recommended from our members
Intersection of Polycystic Ovary Syndrome and the Gut Microbiome.
The etiology of polycystic ovary syndrome (PCOS) remains unclear, although studies indicate that both genetic and environmental factors contribute to the syndrome. In 2012, Tremellen and Pearce proposed the idea that dysbiosis of the intestinal (gut) microbiome is a causative factor of metabolic and reproductive manifestations of PCOS. In the past 5 years, studies in both humans and rodent models have demonstrated that changes in the taxonomic composition of gut bacteria are associated with PCOS. Studies have also clearly shown that these changes in gut microbiota are associated with PCOS as opposed to obesity, since these changes are observed in women with PCOS that are both of a normal weight or obese, as well as in adolescent girls with PCOS and obesity compared with body mass index- and age-matched females without the disorder. Additionally, studies in both women with PCOS and rodent models of PCOS demonstrated that hyperandrogenism is associated with gut microbial dysbiosis, indicating that androgens may modulate the gut microbial community in females. One study reported that the fecal microbiome transplantation of stool from women with PCOS or exposure to certain bacteria resulted in a PCOS-like phenotype in mice, while other studies showed that exposure to a healthy gut microbiome, pre/probiotics, or specific gut metabolites resulted in protection from developing PCOS-like traits in mice. Altogether, these results suggest that dysbiosis of the gut microbiome may be sufficient to develop PCOS-like symptoms and that modulation of the gut microbiome may be a potential therapeutic target for PCOS
FOXO1 is regulated by insulin and IGF1 in pituitary gonadotropes
The FOXO1 transcription factor is important for multiple aspects of reproductive function. We previously reported that FOXO1 functions as a repressor of gonadotropin hormone synthesis, but how FOXO1 is regulated in pituitary gonadotropes is unknown. The growth factors, insulin and insulin-like growth factor I (IGF1), function as key regulators of cell proliferation, metabolism and apoptosis in multiple cell types through the PI3K/AKT signaling pathway. In this study, we found that insulin and IGF1 signaling in gonadotropes induced FOXO1 phosphorylation through the PI3K/AKT pathway in immortalized and primary cells, resulting in FOXO1 relocation from the nucleus to the cytoplasm. Furthermore, insulin administration in vivo induced phosphorylation of FOXO1 and AKT in the pituitary. Thus, insulin and IGF1 act as negative regulators of FOXO1 activity and may serve to fine-tune gonadotropin expression
- …